Composition of Hydrocarbon Gases Formed by Dry Pysolysis of Domanik Shale Kerogen after Hydrothermal Experiment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The composition of hydrocarbon gases formed by pyrolysis of residual Domanik shale kerogen at 800°C, preceded by hydrothermal treatment at 250–375°С, was studied by pyrolytic gas chromatography. Starting from the autoclave temperature of 320–325°C, the hydrothermal treatment of the shale affects the kerogen structures responsible for the formation of C2+ gases in pyrolysis at 800°C. An increase in the temperature of the shale hydrothermal treatment leads to a monotonic increase in the С1/С2+ ratio in the products of the residual kerogen pyrolysis at 800°C. The methane yield at 800°C does not correlate with the content of alkyl structures, determined in kerogen by IR spectroscopy, and the yield of С2+ gases linearly correlates with the content of alkyl structures.

Sobre autores

D. Bushnev

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences

Email: boushnev@geo.komisc.ru
Komi Republic, 167982, Syktyvkar, Russia

N. Burdel'naya

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
Komi Republic, 167982, Syktyvkar, Russia

A. Il'chenko

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
Komi Republic, 167982, Syktyvkar, Russia

Ya. Sennikova

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences; Pitirim Sorokin Syktyvkar State University

Autor responsável pela correspondência
Email: petrochem@ips.ac.ru
Komi Republic, 167982, Syktyvkar, Russia; Komi Republic, 167001, Syktyvkar, Russia

Bibliografia

  1. Galimov E.M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks // Chem. Geol. 1988. V. 71. № 1-3. P. 77-95. https://doi.org/10.1016/0009-2541(88)90107-6
  2. Галимов Э.М. Источники и механизмы образования углеводородных газов в осадочных породах // Геохимия. 1989. № 2. C. 163-180.
  3. Behar F., Vandenbroucke M., Teerman S.C., Hatcher P.G., Leblond C., Lerat O. Experimental simulation of gas generation from coals and a marine kerogen // Chem. Geol. 1995. V. 126. № 3-4. P. 247-260. https://doi.org/10.1016/0009-2541(95)00121-2
  4. İnan S. Gaseous hydrocarbons generated during pyrolysis of petroleum source rocks using unconventional grain-size: implications for natural gas composition // Org. Geochem. 2000. V. 31. № 12. P. 1409-1418. https://doi.org/10.1016/S0146-6380(00)00070-X
  5. Lewan M.D. Laboratory simulation of petroleum formation - hydrous pyrolysis // In: Orgаnic Geochemistry. Engler M.H., Macko S.A. Еds. New York: Plenum 1993. P. 419-442.
  6. Stalker L., Larter S.R., Farrimond P. Biomarker binding into kerogen: evidence from hydrous pyrolysis using heavy water (D2O) // Org. Geochem. 1998. V. 28. № 3-4. P. 239-253. https://doi.org/10.1016/S0146-6380(97)00103-4
  7. Koopmans M.P., Carson F.C., Sinninghe Damsté J.S., Lewan M.D. Biomarker generation from type II-S kerogens in claystone and limestone during hydrous and anhydrous pyrolysis // Org. Geochem. 1998. V. 29. № 5-7. P. 1395-1402. https://doi.org/10.1016/S0146-6380(98)00187-9
  8. Behar F., Roy S., Jarvie D. Artificial maturation of a type I kerogen in closed system: mass balance and kinetic modeling // Org. Geochem. 2010. V. 41. P. 1235-1247.
  9. Бушнев Д.А., Бурдельная Н.С., Шанина С.Н., Макарова Е.С. Генерация углеводородных и гетероатомных соединений высокосернистым горючим сланцем в процессе водного пиролиза // Нефтехимия. 2004. Т. 44. № 6. С. 1-13
  10. Bushnev D.A., Burdel'naya N.S., Shanina S.N., Makarova E.S. Generation of hydrocarbons and hetero compounds by sulfur-rich oil shale in hydrous pyrolysis // Petrol. Chemisrty. 2004. V. 44. № 6. P. 416-425.
  11. Меленевский В.Н., Конторович А.Э., Хуанг В.-Л., Ларичев А.И., Бульбак Т.А. Аквапиролиз органического вещества рифейского аргиллита // Геохимия. 2009. № 5. С. 504-512
  12. Melenevsky V.N., Kontorovich A.E., Huang W.-L., Larichev A.I., Bul'bak T.A. Hydrothermal pyrolysis of organic matter in Riphean mudstone // Geochemistry Int. 2009. V. 47. № 5. P. 476-484.
  13. Бушнев Д.А., Бурдельная Н.С. Моделирование процесса нефтеобразования углеродистым сланцем доманика // Нефтехимия. 2013. Т. 53. № 3. C. 163-170. https://doi.org/10.7868/S0028242113030027
  14. Bushnev D.A., Burdel'naya N.S. Modeling of oil generation by Domanik carbonaceous shale // Petrol. Chemisrty. 2013. V. 53. № 3. P. 145-151. https://doi.org/10.1134/S096554411303002X.
  15. Бушнев Д.А., Бурдельная Н.С. Нефти и органическое вещество позднедевонских отложений Тимано-Печорского бассейна, сопоставление по молекулярным и изотопным данным // Нефтехимия. 2015. Т. 55. № 5. С. 375-382. https://doi.org/10.7868/S0028242115050032
  16. Bushnev D.A., Burdel'naya N.S. Crude oils and organic matter of Late Devonian deposits of the Timan-Pechora Basin: comparison by molecular and isotopic data // Petrol. Chemisrty 2015. V. 55. № 7. P. 522-529. https://doi.org/10.1134/S0965544115070038.
  17. Kotarba M.J., Lewan M.D. Sources of natural gases in Middle Cambrian reservoirs in Polish and Lithuanian Baltic Basin as determined by stable isotopes and hydrous pyrolysis of lower palaeozoic source rocks // Chem. Geol. 2013. V. 345. P. 62-76. https://doi.org/10.1016/j.chemgeo.2013.02.023
  18. Бычков А.Ю., Калмыков Г.А., Бугаев И.А., Калмыков А.Г., Козлова Е.В. Экспериментальные исследования получения углеводородных флюидов из пород баженовской свиты при гидротермальном воздействии // Вестник Московского университета. 2015. Серия 4: Геология. № 4. C. 34-39
  19. Bychkov A.Yu., Kalmykov G.A., Bugaev I.A., Kalmykov A.G., Kozlova E.V. Experimental investigations of hydrocarbon fluid recovery from hydrothermally treated rocks of the bazhenov formation // Mosk. Univ. Geol. Bull. 2015. V. 70. № 4. P. 299-304.
  20. Бушнев Д.А., Бурдельная Н.С., Мокеев М.В. Результаты 13C ЯМР- и ИК-спектроскопии керогена верхнедевонских доманикитов Тимано-Печорского бассейна // Геохимия. 2019. Т. 64. № 11. С. 1146-1157. https://doi.org/10.31857/S0016-752564111146-1157
  21. Bushnev D.A., Burdel'naya N.S., Mokeev M.V. Results of 13C NMR- and FTIR-spectroscopy of kerogen from the upper devonian domanik of the Timan-Pechora Basin // Geochemistry Int. 2019. V. 57. № 11. P. 1173-1184. https://doi.org/10.1134/S0016702919110028.
  22. Burdel,naya N., Bushnev D., Mokeev M., Dobrodumov A. Experimental study of kerogen maturation by solid state 13C NMR-spectroscopy // Fuel. 2014. V. 118. P. 308-314. https://doi.org/10.1016/j.fuel.2013.11.003
  23. Мухина Т.Н., Барабанов Н.Л., Бабаш С.Е. Пиролиз углеводородного сырья. М.: Химия, 1987. 240 с.
  24. Savage P.E. Mechanisms and kinetics models for hydrocarbon pyrolysis // J. Anal. Appl. Pyrolysis. 2000. V. 54. P. 109-126. https://doi.org/10.1016/S0165-2370(99)00084-4
  25. Liu J., Jiang X., Shen J., Zhang H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation // Energy Convers. Manag. 2014. V. 87. P. 1027-1038. https://doi.org/10.1016/j.enconman.2014.07.053
  26. Zhang L., Qi S., Takeda N., Kudo S., Hayashi J., Norinaga K. Characteristics of gas evolution profiles during coal pyrolysis and its relation with the variation of functional groups // Int. J. Coal Sci. Technol. 2018. V. 5. P. 452-463. https://doi.org/10.1007/s40789-017-0175-0
  27. Hodek W., Kirschstein J., van Heek K.H. Reactions of oxygen containing structures in coal pyrolysis // Fuel. 1991. V. 70. P. 424-428. https://doi.org/10.1016/0016-2361(91)90133-U
  28. Holstein A., Bassilakis R., Wójtowicz M.A., Serio M.A. Kinetics of methane and tar evolution during coal pyrolysis // Proc. Combust. Inst. 2005. V. 30. P. 2177-2185. https://doi.org/10.1016/j.proci.2004.08.231

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies