Modeling the problem of low-orbital satellite UV-tomography of the ionosphere


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The results of modeling the direct and inverse problems of low-orbital satellite ultraviolet (UV) tomography of the ionospheric 135.6 OI volume emission rate are presented. The direct problem was solved with the orbital geometry of DMSP block 5D3 satellites with SSUSI and SSULI UV spectrographs among the other payloads, the real operating parameters of these instruments (the scan rate and the interval of scan angles), and the set of the model distributions of the volume emission rate that contain irregularities on various scales. The solution of the direct problem yields the radiation intensities in the 135.6 nm line, which is used as the input data for reconstructing the initial (prototype) model distributions of the volume emission rates. The obtained system of linear equations (SLE) was solved using the Algebraic Reconstruction Technique (ART) and Simultaneous Iterative Reconstructive Technique (SIRT) algorithms, which are highly efficient in problems of the low-orbit radio tomography of the ionosphere. It is shown that the initial model distribution can be successively reconstructed if one takes the non-negativity condition of the solution into account, uses weighting functions to decrease the solution in the regions where it is known to be a priori small, and applies inter-iteration smoothing to eliminate the effects of the approximation errors. Here, the averaging parameters should decrease in the course of the iterations. With these constraints fulfilled, the computational costs of the ART- and SIRT-based solutions are similar, while the reconstruction error is approximately 6%. The influence of random errors and bias in the data on the results of the reconstruction is explored. It is shown that with a given error level of the initial data the parameters of the reconstruction algorithms can be adjusted in such a way as to efficiently suppress the influence of the noise with a relative amplitude of 2–3% on the solution.

Ключевые слова

Об авторах

I. Nesterov

Department of Physics

Автор, ответственный за переписку.
Email: nia2002@yandex.ru
Россия, Moscow, 119991

A. Padokhin

Department of Physics

Автор, ответственный за переписку.
Email: padokhin@physics.msu.ru
Россия, Moscow, 119991

E. Andreeva

Department of Physics

Email: padokhin@physics.msu.ru
Россия, Moscow, 119991

S. Kalashnikova

Department of Physics

Email: padokhin@physics.msu.ru
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».