Using Asymptotic Analysis for Developing a One-Dimensional Substance Transport Model in the Case of Spatial Heterogeneity
- Авторы: Kvas A.A.1, Levashova N.T.1, Salnik A.K.1
-
Учреждения:
- Department of Physics
- Выпуск: Том 72, № 6 (2017)
- Страницы: 518-526
- Раздел: Theoretical and Mathematical Physics
- URL: https://journals.rcsi.science/0027-1349/article/view/164861
- DOI: https://doi.org/10.3103/S0027134917060091
- ID: 164861
Цитировать
Аннотация
We study a solution with an internal transition layer of a one-dimensional boundary value problem for the stationary reaction–advection–diffusion differential equation that arises in mathematical modeling of transport phenomena in the surface layer of the atmosphere in the case of non-uniform vegetation on the assumption of space isotropy along one of the horizontal axes and neutral atmospheric stratification. The parameters of the model at which a boundary value problem has a stable stationary solution with an internal transition layer localized near the boundary between different vegetation types are provided. The existence of such a solution and its local Lyapunov stability and uniqueness are proven. The results can be used for developing multidimensional substance transfer models in the case of a spatial heterogeneity.
Об авторах
A. Kvas
Department of Physics
Email: natasha@npanalytica.ru
Россия, Moscow, 119991
N. Levashova
Department of Physics
Автор, ответственный за переписку.
Email: natasha@npanalytica.ru
Россия, Moscow, 119991
A. Salnik
Department of Physics
Email: natasha@npanalytica.ru
Россия, Moscow, 119991
Дополнительные файлы
