The Electron-Vibrational Interaction in a Thiophene—Phenylene Cooligomer and Its Relationship to the Raman Spectrum


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Electron-vibrational interactions play a key role in limiting charge mobility in organic semi-conductors. This paper reports a theoretical study of the electron—phonon interaction in the 5,5′-diphenyl-2,2′-bitiophene (PTTP) molecule, which belongs to the class of thiophene-phenylene cooligomers, which are of great interest for organic optoelectronics due to their electron-transport and luminescent properties; these results are compared with anthracene, which is a model organic semiconductor. The contributions of various vibrational modes to the reorganization energy of PTTP and the anthracene molecules are revealed and it is shown that these contributions correlate with the intensities of the corresponding bands in the Raman spectrum. In particular, it is found that for the PTTP molecule the so-called I-mode with a frequency of ∼1460 cm−1, which corresponds to collective vibration of atoms of all oligomer units, has the highest intensity in both spectra. These results indicate the promise of Raman spectroscopy for studying electron-vibrational interactions in organic semiconductors. Finally, the mobility of holes in PTTP and anthracene is estimated in the framework of the jump model and the reasons for their difference are analyzed. Based on these results, we propose some ways to reduce the electron-vibrational interaction in thiophene—phenylene cooligomers, which is important for the directional molecular design of organic semiconductors.

作者简介

A. Sosorev

Department of Physics and International Laser Center; Institute of Spectroscopy

编辑信件的主要联系方式.
Email: sosorev@physics.msu.ru
俄罗斯联邦, Moscow, 119991; Troitsk, 108840

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019