Classification of Uncertainties in Modeling of Complex Biological Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An analogue of the Heisenberg uncertainty principle (complexity) is introduced for complex biological systems in the framework of the new chaos-self-organization theory. The requirement for such an analysis is determined by the absence of stationary regimes of biosystems (dx/dt ≠ 0 is continuous for the state vector complexity x(t)), uninterrupted chaotic change of the statistical functions f (x) and other parameters. At present, this is defined as type 2 uncertainty. At the same time, type 1 uncertainty is introduced for the complexity when f (x) do not change, and the quasi-attractor parameters can change. A neuron network simulator finds the differences between the samples in the absence of statistical differences.

作者简介

V. Eskov

Department of Biology and Biotechnology, Institute of Natural and Technical Sciences

编辑信件的主要联系方式.
Email: firing.squad@mail.ru
俄罗斯联邦, Surgut, 628415

D. Filatova

Department of Biology and Biotechnology, Institute of Natural and Technical Sciences

编辑信件的主要联系方式.
Email: dfil.diana@yandex.ru
俄罗斯联邦, Surgut, 628415

L. Ilyashenko

Department of Natural Sciences and Humanities, Surgut Branch

Email: dfil.diana@yandex.ru
俄罗斯联邦, Surgut, 628404

Yu. Vochmina

Department of Biology and Biotechnology, Institute of Natural and Technical Sciences

Email: dfil.diana@yandex.ru
俄罗斯联邦, Surgut, 628415

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019