Heat propagation in a nonuniform rod of variable cross section


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An integral formula is used to average a coupled problem of thermoelasticity for a nonuniform rod of variable cross section. Effective characteristics are found. It is shown that, in addition to the expected effective coefficients, there appear five independent coefficients characterizing the temperature change rate effect on the stresses in the rod, on the longitudinal heat flux, and on the entropy distribution along the length of the rod. A feature of these new coefficients is that they become equal to zero in the case of a uniform rod. The homogenization of the thermoelasticity equations for nonuniform rods allows one to propose a new theory of heat conduction in rods. This new theory differs from the classical one by the fact that some new terms are added to the Duhamel–Neumann law, to the Fourier heat conduction law, and to the entropy expression. These new terms are proportional to the temperature change rate with time. It is also shown that, in the new theory of heat conduction, the propagation velocity of harmonic heat perturbations is dependent on the oscillation frequency and is finite when the frequency tends to infinity.

作者简介

V. Gorbachev

Moscow State University

编辑信件的主要联系方式.
Email: vigorby@mail.ru
俄罗斯联邦, Leninskie Gory, Moscow, 119899

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017