Outlier Detection in QSAR Modeling of the Biological Activity of Chemicals by Analyzing the Structure–Activity–Similarity Maps


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new method for the detection of outliers in training sets used in QSAR model construction is developed. The method is based on the analysis of structure–activity–similarity (SAS) maps. It involves an empirical assessment of the likelihood of a chemical compound appearing in a particular SAS area. We propose to regard the compounds that have the maximal probability of an “activity cliff” (AC) region and the minimal probability of appearing in a “smooth region” (SR) as outliers. The method proposed can be used in the field of medicinal chemistry to search for new promising biologically active chemical compounds.

Негізгі сөздер

Авторлар туралы

L. Grigoreva

Department of Fundamental Physical and Chemical Engineering

Хат алмасуға жауапты Автор.
Email: ldg@physchem.msu.ru
Ресей, Moscow

V. Grigorev

Institute of Physiologically Active Compounds

Email: ldg@physchem.msu.ru
Ресей, Chernogolovka, Moscow oblast

A. Yarkov

Institute of Physiologically Active Compounds

Email: ldg@physchem.msu.ru
Ресей, Chernogolovka, Moscow oblast

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019