Development of a Series of Neutralizing Nanobodies against SARS-CoV-2 Spike Protein

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Countering the spread of new respiratory infections and reducing the damage they cause to society requires efficient strategies for rapid development of targeted therapeutics, such as monoclonal antibodies. Nanobodies, defined as variable fragments of heavy-chain camelid antibodies, have a set of characteristics that make them particularly convenient for this purpose. The speed at which the SARS-CoV-2 pandemic had spread has confirmed that a key factor in the development of therapeutics is obtaining highly effective blocking agents as soon as possible, as well as the diversity of epitopes to which these agents bind. We have optimized the process of selection of blocking nanobodies from the genetic material of camelids and obtained a panel of nanobody structures with affinity to spike protein in the lower nanomolar and picomolar ranges and high binding specificity. The subset of nanobodies that demonstrate the ability to block the interaction between the spike protein and the cellular ACE2 receptor was selected in experiments in vitro and in vivo. It has been established that the epitopes bound by the nanobodies are located in the RBD domain of the spike protein and have little overlap. The diversity of binding regions may allow the mixture of nanobodies to retain potential therapeutic efficacy towards new variants of the spike protein, and the structural features of nanobodies, in particular, their compact size and high stability, indicate the possibility of their utilization in the form of aerosols.

作者简介

V. Zhuchkov

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: hathkul@gmail.com
Russia, 117997, Moscow

S. Ivanov

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: hathkul@gmail.com
Russia, 117997, Moscow

J. Kravchenko

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: hathkul@gmail.com
Russia, 117997, Moscow

S. Chumakov

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: hathkul@gmail.com
Russia, 117997, Moscow

参考

  1. Pidiyar V., Kumraj G., Ahmed K., Ahmed S., Shah S., Majumder P., Verma B., Pathak S., Mukherjee S. (2022) COVID-19 management landscape: a need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries. Vaccine. 40, 5302‒5312.
  2. Zhou D., Zhou R., Chen Z. (2022) Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. Immunother. Adv. 2, ltab027.
  3. Miguez-Rey E., Choi D., Kim S., Yoon S., Sandulescu O. (2022) Monoclonal antibody therapies in the management of SARS-CoV-2 infection. Expert Opin. Investig. Drugs. 31, 41‒58.
  4. Liu L., Iketani S., Guo Y., Chan J.F., Wang M., Liu L., Luo Y., Chu H., Huang Y., Nair M.S., Yu J., Chik K.K., Yuen T.T., Yoon C., To K.K., Chen H., Yin M.T., Sobieszczyk M.E., Huang Y., Wang H.H., Sheng Z., Yuen K.Y., Ho D.D. (2022) Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 602, 676‒681.
  5. Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., Bolland W.H., Porrot F., Staropoli I., Lemoine F., Pere H., Veyer D., Puech J., Rodary J., Baele G., Dellicour S., Raymenants J., Gorissen S., Geenen C., Vanmechelen B., Wawina-Bokalanga T., Marti-Carreras J., Cuypers L., Seve A., Hocqueloux L., Prazuck T., Rey F.A., Simon-Loriere E., Bruel T., Mouquet H., Andre E., Schwartz O. (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602, 671‒675.
  6. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E.B., Bendahman N., Hamers R. (1993). Naturally occurring antibodies devoid of light chains. Nature. 363, 446‒448.
  7. Тиллиб С.В. (2020) Перспективы использования однодоменных антител в биомедицине. Молекуляр. биология. 54(3), 362‒373.)https://doi.org/10.31857/S0026898420030167
  8. Huo J., Le Bas A., Ruza R.R., Duyvesteyn H.M.E., Mikolajek H., Malinauskas T., Tan T.K., Rijal P., Dumoux M., Ward P.N., Ren J., Zhou D., Harrison P.J., Weckener M., Clare D.K., Vogirala V.K., Radecke J., Moynie L., Zhao Y., Gilbert-Jaramillo J., Knight M.L., Tree J.A., Buttigieg K.R., Coombes N., Elmore M.J., Carroll M.W., Carrique L., Shah P.N.M., James W., Townsend A.R., Stuart D.I., Owens R.J., Naismith J.H. (2020) Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 27, 846‒854.
  9. Zost S.J., Gilchuk P., Chen R.E., Case J.B., Reidy J.X., Trivette A., Nargi R.S., Sutton R.E., Suryadevara N., Chen E.C., Binshtein E., Shrihari S., Ostrowski M., Chu H.Y., Didier J.E., MacRenaris K.W., Jones T., Day S., Myers L., Eun-Hyung Lee F., Nguyen D.C., Sanz I., Martinez D.R., Rothlauf P.W., Bloyet L.M., Whelan S.P.J., Baric R.S., Thackray L.B., Diamond M.S., Carnahan R.H., Crowe J.E., Jr. (2020) Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26, 1422‒1427.
  10. Amanat F., Stadlbauer D., Strohmeier S., Nguyen T.H.O., Chromikova V., McMahon M., Jiang K., Arunkumar G.A., Jurczyszak D., Polanco J., Bermudez-Gonzalez M., Kleiner G., Aydillo T., Miorin L., Fierer D.S., Lugo L.A., Kojic E.M., Stoever J., Liu S.T.H., Cunningham-Rundles C., Felgner P.L., Moran T., Garcia-Sastre A., Caplivski D., Cheng A.C., Kedzierska K., Vapalahti O., Hepojoki J.M., Simon V., Krammer F. (2020) A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 26, 1033‒1036.
  11. Fukumoto Y., Obata Y., Ishibashi K., Tamura N., Kikuchi I., Aoyama K., Hattori Y., Tsuda K., Nakayama Y., Yamaguchi N. (2010) Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology. 62, 73‒82.
  12. Ginestier C., Cervera N., Finetti P., Esteyries S., Esterni B., Adelaide J., Xerri L., Viens P., Jacquemier J., Charafe-Jauffret E., Chaffanet M., Birnbaum D., Bertucci F. (2006) Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin. Cancer Res. 12, 4533‒4544.
  13. Pfaffl M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
  14. Maass D.R., Sepulveda J., Pernthaner A., Shoemaker C.B. (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Methods. 324, 13‒25.
  15. Benhar I., Reiter Y. (2002) Phage display of single-chain antibody constructs. Curr. Protoc. Immunol. Chapter 10, Unit 10 19B. https://doi.org/10.1002/0471142735.im1019bs48
  16. Studier F.W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207‒234.
  17. Ch’ng A.C.W., Ahmad A., Konthur Z., Lim T.S. (2019) A high-throughput magnetic nanoparticle-based semi-automated antibody phage dsplay biopanning. Methods Mol. Biol. 1904, 377‒400.
  18. Yuan T.Z., Garg P., Wang L., Willis J.R., Kwan E., Hernandez A.G.L., Tuscano E., Sever E.N., Keane E., Soto C., Mucker E.M., Fouch M.E., Davidson E., Doranz B.J., Kailasan S., Aman M.J., Li H., Hooper J.W., Saphire E.O., Crowe J.E., Liu Q., Axelrod F., Sato A.K. (2022). Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. mAbs. 14, 2002236.
  19. Favorskaya I.A., Shcheblyakov D.V., Esmagambetov I.B., Dolzhikova I.V., Alekseeva I.A., Korobkova A.I., Voronina D.V., Ryabova E.I., Derkaev A.A., Kovyrshina A.V., Iliukhina A.A., Botikov A.G., Voronina O.L., Egorova D.A., Zubkova O.V., Ryzhova N.N., Aksenova E.I., Kunda M.S., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. (2022) Single-domain antibodies efficiently neutralize SARS-CoV-2 variants of concern. Front. Immunol. 13, 822159.
  20. Ye G., Gallant J., Zheng J., Massey C., Shi K., Tai W., Odle A., Vickers M., Shang J., Wan Y., Du L., Aihara H., Perlman S., LeBeau A., Li F. (2021) The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. Elife. 10, e64815. https://doi.org/10.7554/eLife.64815
  21. Maeda R., Fujita J., Konishi Y., Kazuma Y., Yamazaki H., Anzai I., Watanabe T., Yamaguchi K., Kasai K., Nagata K., Yamaoka Y., Miyakawa K., Ryo A., Shirakawa K., Sato K., Makino F., Matsuura Y., Inoue T., Imura A., Namba K., Takaori-Kondo A. (2022) A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun. Biol. 5, 669.
  22. Custodio T.F., Das H., Sheward D.J., Hanke L., Pazicky S., Pieprzyk J., Sorgenfrei M., Schroer M.A., Gruzinov A.Y., Jeffries C.M., Graewert M.A., Svergun D.I., Dobrev N., Remans K., Seeger M.A., McInerney G.M., Murrell B., Hallberg B.M., Low C. (2020) Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 11, 5588.
  23. Hanke L., Vidakovics Perez L., Sheward D.J., Das H., Schulte T., Moliner-Morro A., Corcoran M., Achour A., Karlsson Hedestam G.B., Hallberg B.M., Murrell B., McInerney G.M. (2020) An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 11, 4420.
  24. Valenzuela Nieto G., Jara R., Watterson D., Modhiran N., Amarilla A.A., Himelreichs J., Khromykh A.A., Salinas-Rebolledo C., Pinto T., Cheuquemilla Y., Margolles Y., Lopez Gonzalez Del Rey N., Miranda-Chacon Z., Cuevas A., Berking A., Deride C., Gonzalez-Moraga S., Mancilla H., Maturana D., Langer A., Toledo J.P., Muller A., Uberti B., Krall P., Ehrenfeld P., Blesa J., Chana-Cuevas P., Rehren G., Schwefel D., Fernandez L.A., Rojas-Fernandez A. (2021) Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci. Rep. 11, 3318.
  25. Kunz P., Zinner K., Mucke N., Bartoschik T., Muyldermans S., Hoheisel J.D. (2018) The structural basis of nanobody unfolding reversibility and thermoresistance. Sci. Rep. 8, 7934.
  26. Rossey I., Gilman M.S., Kabeche S.C., Sedeyn K., Wrapp D., Kanekiyo M., Chen M., Mas V., Spitaels J., Melero J.A., Graham B.S., Schepens B., McLellan J.S., Saelens X. (2017) Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat. Commun. 8, 14158.
  27. Touret F., Baronti C., Pastorino B., Villarroel P.M.S., Ninove L., Nougairede A., de Lamballerie X. (2022) In vitro activity of therapeutic antibodies against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5. Sci. Rep. 12, 12609.
  28. Hwang Y.C., Lu R.M., Su S.C., Chiang P.Y., Ko S.H., Ke F.Y., Liang K.H., Hsieh T.Y., Wu H.C. (2022) Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J. Biomed. Sci. 29(1), 1.
  29. Piepenbrink M.S., Park J.G., Oladunni F.S., Deshpande A., Basu M., Sarkar S., Loos A., Woo J., Lovalenti P., Sloan D., Ye C., Chiem K., Bates C.W., Burch R.E., Erdmann N.B., Goepfert P.A., Truong V.L., Walter M.R., Martinez-Sobrido L., Kobie J.J. (2021) Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Rep. Med. 2, 100218.
  30. Lu J., Yin Q., Pei R., Zhang Q., Qu Y., Pan Y., Sun L., Gao D., Liang C., Yang J., Wu W., Li J., Cui Z., Wang Z., Li X., Li D., Wang S., Duan K., Guan W., Liang M., Yang X. (2022) Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. Virol. Sin. 37, 238‒247.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (544KB)
3.

下载 (1MB)
4.

下载 (452KB)

版权所有 © В.А. Жучков, С.В. Иванов, Ю.Е. Кравченко, С.П. Чумаков, 2023

##common.cookie##