DNA Double-Strand Break Repair System by a Mechanism of Non-Homologous End Joining Provides Resistance to DNA-Damaging and Oxidizing Stresses in the Yeast Debaryomyces hansenii
- Authors: Cherdantsev I.A.1,2, Kulagin K.A.1,3, Poliakova A.N.2, Karpov V.L.1, Sosnovtseva A.O.1,3, Karpov D.S.1,3
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Lomonosov Moscow State University
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Issue: Vol 59, No 4 (2025)
- Pages: 616-628
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://journals.rcsi.science/0026-8984/article/view/320602
- DOI: https://doi.org/10.31857/S0026898425040083
- ID: 320602
Cite item
Abstract
Keywords
About the authors
I. A. Cherdantsev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Lomonosov Moscow State UniversityMoscow, 119991 Russia; Moscow, 119234 Russia
K. A. Kulagin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, 119991 Russia; Moscow, 119991 Russia
A. N. Poliakova
Lomonosov Moscow State UniversityMoscow, 119234 Russia
V. L. Karpov
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, 119991 Russia
A. O. Sosnovtseva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, 119991 Russia; Moscow, 119991 Russia
D. S. Karpov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: aleom@yandex.ru
Moscow, 119991 Russia; Moscow, 119991 Russia
References
- Breuer U., Harms H. (2006) Debaryomyces hansenii — an extremophilic yeast with biotechnological potential. Yeast. 23(6), 415–437.
- Gomes A.C., Miranda I., Silva R.M., Moura G.R., Thomas B., Akoulitchev A., Santos M.A. (2007) A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 8(10), R206.
- Krassowski T., Coughlan A.Y., Shen X.X., Zhou X., Kominek J., Opulente D.A., Riley R., Grigoriev I.V., Maheshwari N., Shields D.C., Kurtzman C.P., Hittinger C.T., Rokas A., Wolfe K.H. (2018) Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat. Сommun. 9(1), 1887.
- Ochoa-Gutierrez D., Reyes-Torres A.M., de la Fuente-Colmenares I., Escobar-Sanchez V., Gonzalez J., Ortiz-Hernandez R., Torres-Ramirez N., Segal-Kischinevzky C. (2022) Alternative CUG codon usage in the halotolerant eeast Debaryomyces hansenii: gene expression profiles provide new insights into ambiguous translation. J. Fungi. (Basel). 8(9), 970.
- Dantas Ada S., Day A., Ikeh M., Kos I., Achan B., Quinn J. (2015) Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules. 5(1), 142–165.
- Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuveglise C., Talla E., Goffard N., Frangeul L., Aigle M., Anthouard V., Babour A., Barbe V., Barnay S., Blanchin S., Beckerich J.M., Beyne E., Bleykasten C., Boisrame A., Boyer J., Cattolico L., Confanioleri F., De Daruvar A., Despons L., Fabre E., Fairhead C., Ferry-Dumazet H., Groppi A., Hantraye F., Hennequin C., Jauniaux N., Joyet P., Kachouri R., Kerrest A., Koszul R., Lemaire M., Lesur I., Ma L., Muller H., Nicaud J.M., Nikolski M., Oztas S., Ozier-Kalogeropoulos O., Pellenz S., Potier S., Richard G.F., Straub M.L., Suleau A., Swennen D., Tekaia F., Wesolowski-Louvel M., Westhof E., Wirth B., Zeniou-Meyer M., Zivanovic I., Bolotin-Fukuhara M., Thierry A., Bouchier C., Caudron B., Scarpelli C., Gaillardin C., Weissenbach J., Wincker P., Souciet J.L. (2004) Genome evolution in yeasts. Nature. 430(6995), 35–44.
- Loman A.A., Islam S.M.M., Ju L.K. (2018) Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Appl. Microbiol. Biotechnol. 102(2), 641–653.
- Lopez-Linares J.C., Romero I., Cara C., Castro E., Mussatto S.I. (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technol. 247, 736–743.
- Garcia-Bramasco C.A., Blancas-Benitez F.J., Montano-Leyva B., Medrano-Castellon L.M., Gutierrez-Martinez P., Gonzalez-Estrada R.R. (2022) Influence of marine yeast Debaryomyces hansenii on antifungal and physicochemical properties of chitosan-based films. J. Fungi. (Basel). 8(4), 369.
- Czarnecka M., Zarowska B., Polomska X., Restuccia C., Cirvilleri G. (2019) Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants’ defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol. 83, 1–8.
- Medina-Córdova N., Rosales-Mendoza S., Hernández-Montiel L.G., Angulo C. (2018) The potential use of Debaryomyces hansenii for the biological control of pathogenic fungi in food. Biol. Control. 121, 216–222.
- Yang X., Xiao S., Wang J. (2024) Debaryomyces hansenii strains from traditional chinese dry-cured ham as good aroma enhancers in fermented sausage. Fermentation. 10(3), 152.
- Belloch C., Perea-Sanz L., Gamero A., Flores M. (2022) Selection of Debaryomyces hansenii isolates as starters in meat products based on phenotypic virulence factors, tolerance to abiotic stress conditions and aroma generation. J. Appl. Microbiol. 133(1), 200–211.
- Gientka I., Kieliszek M., Jermacz K., Blazejak S. (2017) Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed. Res. Int. 2017, 6061042.
- Angulo M., Reyes-Becerril M., Cepeda-Palacios R., Angulo C. (2020) Oral administration of Debaryomyces hansenii CBS8339-beta-glucan induces trained immunity in newborn goats. Dev. Comp. Immunol. 105, 103597.
- Angulo M., Reyes-Becerril M., Medina-Cordova N., Tovar-Ramirez D., Angulo C. (2020) Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl. Microbiol. Biotechnol. 104(18), 7689–7699.
- Angulo M., Ramos A., Reyes-Becerril M., Guerra K., Monreal-Escalante E., Angulo C. (2023) Probiotic Debaryomyces hansenii CBS8339 yeast enhanced immune responses in mice. 3 Biotech. 13(1), 28.
- Sanahuja I., Ruiz A., Firmino J.P., Reyes-Lopez F.E., Ortiz-Delgado J.B., Vallejos-Vidal E., Tort L., Tovar-Ramirez D., Cerezo I.M., Morinigo M.A., Sarasquete C., Gisbert E. (2023) Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J. Anim. Sci. Biotechnol. 14(1), 90.
- Spasskaya D.S., Kotlov M.I., Lekanov D.S., Tutyaeva V.V., Snezhkina A.V., Kudryavtseva A.V., Karpov V.L., Karpov D.S. (2021) CRISPR/Cas9-mediated genome engineering reveals the contribution of the 26S proteasome to the extremophilic nature of the yeast Debaryomyces hansenii. ACS Synth. Biol. 10(2), 297–308.
- Daley J.M., Palmbos P.L., Wu D., Wilson T.E. (2005) Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451.
- Richard G.F., Kerrest A., Lafontaine I., Dujon B. (2005) Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol. Biol. Evol. 22(4), 1011–1023.
- Minhas A., Biswas D., Mondal A.K. (2009) Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii. FEMS Yeast Res. 9(1), 95–102.
- Strucko T., Andersen N.L., Mahler M.R., Martinez J.L., Mortensen U.H. (2021) A CRISPR/Cas9 method facilitates efficient oligo-mediated gene editing in Debaryomyces hansenii. Synth. Biol. (Oxf). 6(1), ysab031.
- Alhajouj S., Turkolmez S., Abalkhail T., Alwan Z.H.O., James Gilmour D., Mitchell P.J., Hettema E.H. (2023) Efficient PCR-based gene targeting in isolates of the nonconventional yeast Debaryomyces hansenii. Yeast. 40(11), 550–564.
- Peng D., Tarleton R. (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb. Genom. 1(4), e000033.
- Minhas A., Biswas D., Mondal A.K. (2009) Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii. FEMS Yeast Res. 9(1), 95–102.
- Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics. 10, 421.
- Chico L., Ciudad T., Hsu M., Lue N.F., Larriba G. (2011) The Candida albicans Ku70 modulates telomere length and structure by regulating both telomerase and recombination. PLoS One. 6(8), e23732.
- Legrand M., Chan C.L., Jauert P.A., Kirkpatrick D.T. (2007) Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot Cell. 6(12), 2194–2205.
- Andaluz E., Ciudad T., Larriba G. (2002) An evaluation of the role of LIG4 in genomic instability and adaptive mutagenesis in Candida albicans. FEMS Yeast Res. 2(3), 341–348.
- Rice P., Longden I., Bleasby A. (2000) EMBOSS: the European molecular biology open software suite. Trends Genet. 16(6), 276–277.
- Pearson W.R. (2013) An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinformatics. Ch. 3, 311–318.
- Jia X., Xiao W. (2003) Compromised DNA repair enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system. Toxicol. Sci. 75(1), 82–88.
- Fasullo M., Zeng L., Giallanza P. (2004) Enhanced stimulation of chromosomal translocations by radiomimetic DNA damaging agents and camptothecin in Saccharomyces cerevisiae Rad9 checkpoint mutants. Mutat. Res. 547(1–2), 123–132.
- Oliva-Trastoy M., Defais M., Larminat F. (2005) Resistance to the antibiotic Zeocin by stable expression of the Sh ble gene does not fully suppress Zeocin-induced DNA cleavage in human cells. Mutagenesis. 20(2), 111–114.
- Choi E.H., Yoon S., Hahn Y., Kim K.P. (2017) Cellular dynamics of Rad51 and Rad54 in response to postreplicative stress and DNA damage in HeLa cells. Mol. Cells. 40(2), 143–150.
- Wang H., Boecker W., Wang H., Wang X., Guan J., Thompson L.H., Nickoloff J.A., Iliakis G. (2004) Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene. 23(3), 824–834.
- Zelensky A.N., Sanchez H., Ristic D., Vidic I., van Rossum-Fikkert S.E., Essers J., Wyman C., Kanaar R. (2013) Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucl. Acids Res. 41(13), 6475–6489.
- Dyerberg A.S.B., Navarrete C., Martínez J.L. (2022) High-throughput screening of a Debaryomyces hansenii library for potential candidates with improved stress tolerance and wider carbon utilisation capabilities. bioRxiv. 2022.2003.2024.485636.
- Robert G., Wagner J.R. (2020) ROS-induced DNA damage as an underlying cause of aging. Adv. Geriatric Med. Res. 2(4), e200024.
- Mahaseth T., Kuzminov A. (2016) Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation. DNA Repair (Amst). 41, 42–53.
- Karpov D.S., Spasskaya D.S., Nadolinskaia N.I., Tutyaeva V.V., Lysov Y.P., Karpov V.L. (2019) Deregulation of the 19S proteasome complex increases yeast resistance to 4-NQO and oxidative stress via upregulation of Rpn4- and proteasome-dependent stress responsive genes. FEMS Yeast Res. 19(2), foz002.
- Gonzalez J., Castillo R., Garcia-Campos M.A., Noriega-Samaniego D., Escobar-Sanchez V., Romero-Aguilar L., Alba-Lois L., Segal-Kischinevzky C. (2020) Tolerance to oxidative stress in budding yeast by heterologous expression of catalases A and T from Debaryomyces hansenii. Curr. Microbiol. 77(12), 4000–4015.
- Heinz J., Doellinger J., Maus D., Schneider A., Lasch P., Grossart H.P., Schulze-Makuch D. (2022) Perchlorate-specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines. Environ. Microbiol. 24(11), 5051–5065.
- Navarrete C., Sanchez B.J., Savickas S., Martinez J.L. (2022) DebaryOmics: an integrative -omics study to understand the halophilic behaviour of Debaryomyces hansenii. Microb. Biotechnol. 15(4), 1133–1151.
- Spasskaya D.S., Nadolinskaia N.I., Tutyaeva V.V., Lysov Y.P., Karpov V.L., Karpov D.S. (2020) Yeast Rpn4 links the proteasome and DNA repair via RAD52 regulation. Int. J. Mol. Sci. 21(21), 8097.
- Feng Y., Zhang Y., Li J., Omran R.P., Whiteway M., Feng J. (2022) Transcriptional profiling of the Candida albicans response to the DNA damage agent methyl methanesulfonate. Int. J. Mol. Sci. 23(14), 7555.
- Bharati A.P., Kumari S., Akhtar M.S. (2020) Proteome analysis of Saccharomyces cerevisiae after methyl methane sulfonate (MMS) treatment. Biochem. Biophys. Rep. 24, 100820.
- Ruta L.L., Farcasanu I.C. (2020) Saccharomyces cerevisiae and caffeine implications on the eukaryotic cell. Nutrients. 12(8), 2440.
Supplementary files
