Состояние цианобактерии Arthrospira platensis и ассоциированной с ней микрофлоры при длительном хранении в состоянии АНГИДРОБИОЗА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Стандартными методами определен биохимический состав Arthrospira (Spirulina) platensis (Nordstedt) Gomont после длительного хранения (4 года, 17 лет) в состоянии ангидробиоза. Показано, что количество белков (55.3–61.2%) и суммарных углеводов (13.0–15.6%) в клетках цианобактерий соответствовало данным, известным из литературы и полученным нами ранее при закладке этих же образцов на хранение. Содержание свободных нуклеотидов (1.8–2.6%), липидов (1.3–11.0%) и, особенно, пигментов было низким (0.5–1.3, 0.03–0.12, 1.4–2.0, 0.03–0.05% соответственно, для хлорофилла а, каротиноидов, С-фикоцианина и аллофикоцианина). Количество нуклеиновых кислот в пробах достигало: 3.1–24.0 и 0.11–0.16% соответственно, для РНК и ДНК. При микроскопическом исследовании A. рlatensis (17 лет хранения) показано наличие 34.2% необратимо поврежденных и 65.8% мертвых клеток. Для определения количественных и морфологических показателей ассоциированной микрофлоры предложено использовать комплексную физико-химическую обработку (метанол, ультразвук, центрифугирование) суспензии реактивированных цианобактерий. В морфологической структуре микробиома выделены 3 основные группы (палочковидные, округлые и извитые формы). В сообществе доминировали палочковидные формы: крупные палочки составляли 60.5%, мелкие палочки – 14.4%. Мицелиальные формы (тонкие нити), кокки и извитые формы встречались реже. В среднем объем бактериальной клетки составлял 0.27 ± 0.04 мкм3. Вклад бактерий составлял от 3.3 до 11.3% (в среднем 8.3 ± 4.4%) от веса сухой биомассы А. рlatensis. Высказано предположение, что на биохимические показатели и жизнеспособность цианобактерий оказывала влияние сопутствующая микрофлора.

Об авторах

И. А. Харчук

Федеральный исследовательский центр “Институт биологии южных морей
им. А.О. Ковалевского РАН”

Email: ol.rylkova@yandex.ru
Россия, 299011, Севастополь

О. А. Рылькова

Федеральный исследовательский центр “Институт биологии южных морей
им. А.О. Ковалевского РАН”

Автор, ответственный за переписку.
Email: ol.rylkova@yandex.ru
Россия, 299011, Севастополь

Н. М. Береговая

Федеральный исследовательский центр “Институт биологии южных морей
им. А.О. Ковалевского РАН”

Email: ol.rylkova@yandex.ru
Россия, 299011, Севастополь

Список литературы

  1. Агатова А.И. Руководство по современным биохимическим методам исследования водных экосистем, перспективных для промысла и марикультуры. М.: Изд-во ВНИРО, 2004. 123 с.
  2. Бекер М.Е., Дамберг Б.Э., Рапопорт А.И. Анабиоз микроорганизмов. Рига: Зинатне, 1981. 252 с.
  3. Гевориз Р.Г., Нехорошев М.В. Количественное определение массовой доли С-фикоцианина и аллофикоцианина в сухой биомассе Spirulina (Arthrospira) platensis North. Geitl. Холодная экстракция, Севастополь 2017 // Электронный ресурс https://repository.marine-research.org/handle/299011/46 (дата обращения 19.10.2021).
  4. Копытов Ю.П., Дивавин И.А., Цымбал И.М. Схема комплексного биохимического анализа гидробионтов // “Рациональное использование ресурсов моря – важный вклад в реализацию продовольственной программы”: материалы конф. ИнБЮМ АН УССР. Севастополь, 1985. Т. 4.2. С. 227–231. Деп. в ВИНИТИ 16.04.85, № 2556-85.
  5. Мейсель М.Н., Медведева Г.А., Алексеева В.М. О выявлении живых, поврежденных и мертвых микроорганизмов // Микробиология. 1961. Т. 30. С. 855–862.
  6. Рауэн Т.В., Ханайченко А.Н., Муханов В.С. Влияние микроводорослей и их фильтратов на численность бактерий в среде выращивания камбалы калкана // Морской экологический журн. 2011. Т. 10. № 3. С. 48‒56.
  7. Рылькова О.А., Гулин С.Б., Пименов Н.В. Определение общей численности микроорганизмов в донных осадках Черного моря методом проточной цитометрии // Микробиология. 2019. Т. 88. С. 685‒694.
  8. Rylkova O.A., Gulin S.B., Pimenov N.V. Determination of the total microbial abundance in Black Sea bottom sediments using flow cytometry // Microbiology (Moscow). 2019. V. 88. P. 700‒708.
  9. Сиренко Л.А., Сакевич А.И., Осипович Л.Ф. Методы физиолого-биохимического исследования водорослей в гидробиологической практике. Киев: Наукова думка, 1975. 247 с.
  10. Слизень В.В., Кирильчик Е.Ю., Шабан Ж.Г., Черношей Д.А., Канашкова Т.А. Лабораторный практикум по общей микробиологии. 5-е изд. Минск: БГМУ, 2020. 80 с.
  11. Спирин А.С. Спектрофотометрическое определение суммарного количества нуклеиновых кислот // Биохимия. 1958. Т. 23. С. 656–662.
  12. Стадничук И.Н. Фикобилипротеины. Итоги науки и техники. Сер. Биол. химия. М. ВИНИТИ, 1990. Т. 40. 196 с.
  13. Тархова Э.П. Микроорганизмы, сопутствующие Spirulina platensis в накопительной питательной культуре // Экология моря. 2005. Вып. 70. С. 49‒52.
  14. Харчук И.А. Влияние длительности хранения на жизнеспособность клеток Spirulina platensis (Nordst.) в состоянии ангидробиоза // Экология моря. 2007. Вып. 74. С. 80–83.
  15. Харчук И.А. Динамика компонентов биохимического состава Spirulina platensis Nords. при ангидробиозе // Экология моря. 2008. Вып. 76. С. 67‒71.
  16. Харчук И.А. Способ длительного хранения микроводорослей. RU 2541452 C1 от 10.02.2015.
  17. Харчук И.А. Динамика жизнеспособности и компонентов биохимического состава Arthrospira (Spirulina) platensis (Nords) Gomont в зависимости от температуры дегидратации при переводе в состояние ангидробиоза // Вопросы современной альгологии. 2018. № 1(16). http://algology.ru/1258
  18. Шлегель Г. Общая микробиология. М.: Мир, 1987. 566 с.
  19. Bratbak G., Kemp P.F., Sherr B.F., Sherr E.B., Cole J.J. Microscope methods for measuring bacterial biovolume: Epifluorescence microscopy, scanning electron microscopy, and transmission electron microscopy // Handbook of Methods in Aquatic Microbial Ecology / Eds. Cole J.J. Boca Raton: CRC Press, 1993. Ch. 36. P. 309–317. https://doi.org/10.1201/9780203752746
  20. Ciferri O. Spirulina, the edible microorganism // Microbiol. Rev. 1983. V. 47. P. 551‒578.
  21. Falquet J., Hurni J.P. Spiruline Aspects Nutritionnels. Antenna Technologies, 2006. 41 p.
  22. Faucher O., Coupal B., Leduy A. Utilization of scawater – urea as a culture medium for Spirulina maxima // Can. J. Microbiol. 1979. V. 25. P. 752.
  23. Kallmeyer J., Smith D.C., Spivac A.J., D’Hondt S. New cell extraction procedure applied to deep subsurface sediments // Limnol. Oceanogr. Methods. 2008. V. 6. P. 236–245.
  24. Kannaujiya V.K., Sinha R.P. Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives // J. Appl. Phycol. 2016. V. 28. P. 1063–1070. https://doi.org/10.1007/s10811-015-0638-x
  25. Liu Q., Huang Y., Zhang R., Cai T., Cai Y. Medical application of Spirulina platensis derived C-phycocyanin // Evid. Based Complement. Alternat. Med. 2016. V. 2016. 14 p. Art. 7803846. https://doi.org/10.1155/2016/7803846
  26. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.P. Protein measurement with folin phenol reagent // J. Biol. Chem. 1951. V. 193. P. 265–275.
  27. Lunau M., Lemke A., Walther K., Martens-Habbena W., Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy // Environ. Microbiol. 2005. V. 7. P. 961–968.
  28. Mogale M. Identification and quantification of bacteria associated with cultivated Spirulina and impact of physiological factors. University of Cape Town, 2016. http://hdl.handle.net/11427/22921
  29. Nalage D., Khedkar G., Kalyankar A., Sarkate A., Ghodke S., Bedre V.B., Khedkar C.D. Single cell proteins // The Encyclopedia of Food and Health / Eds. Caballero B., Finglas P., Toldra F. London, UK: Oxford, Academic Press, 2016. V. 4. P. 790‒794.
  30. Rowan K.S. Photosynthetic Pigments of Algae. Cambridge: Cambridge Univ. Press, 1989. 334 p.
  31. Vardaka E., Kormas K.A., Katsiapi M., Genitsaris S., Moustaka-Gouni M. Molecular diversity of bacteria in commercially available “Spirulina” food supplements // PeerJ. 2016. V. 4. P. 1610.
  32. Velji M.I., Albright L.J. Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter and kelp blade samples following pyrophosphate and ultrasound treatments // Can. J. Microbiol. 1986. V. 32. P. 121–126.
  33. Vonshak A. (ed.) Spirulina platensis (Arthrospira). Physiology, Cell-Biology and Biotechnology. CRC Press, 1997. 233 p.

Дополнительные файлы


© И.А. Харчук, О.А. Рылькова, Н.М. Береговая, 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах