


Том 85, № 4 (2016)
- Год: 2016
- Статей: 16
- URL: https://journals.rcsi.science/0026-2617/issue/view/9876
Reviews
Modern methods for isolation, purification, and cultivation of soil cyanobacteria
Аннотация
Up-to-date methods for isolation of cyanobacteria from soil samples, removal of accompanying microflora, obtaining axenic strains, and conditions and media for subsequent cultivation are reviewed. Characterization of soil as a specific habitat for cyanobacteria is provided. Comparative analysis of pH and elemental composition of the liquid phase of most soil types with the media for cultivating cyanobacteria is carried out. The functional role of the major components required for the cultivation of cyanobacteria is described. The problems associated with isolation, purification, and cultivation of soil cyanobacteria, as well as the relevant solutions, are discussed.



Experimental Articles
Hydrogenogenic and sulfidogenic growth of Thermococcus archaea on carbon monoxide and formate
Аннотация
Enrichment and pure cultures of hyperthermophilic archaea capable of anaerobic growth on one-carbon compounds (CO and/or formate) were obtained from deep-sea sites of hydrothermal activity at the Mid-Atlantic Ridge, Lau Basin, and Guaymas Basin. All isolates belonged to the T. barophilus‒T. paralvinellae group within the genus Thermococcus. In all cases available for analysis, the genomes of Thermococcus strains capable of growth by hydrogenogenic utilization of CO and/or formate contained clusters of genes encoding energy-converting hydrogenase and either CO dehydrogenase or formate dehydrogenase and formate transporter. Apart from the previously known processes of hydrogenogenic oxidation of CO and formate, the oxidation of these substrates coupled to sulfur reduction was observed, processes previously unknown among archaea. The capacities for hydrogenogenic or sulfidogenic oxidation of CO and formate occurred in the studied strains in all possible combinations, which could only in part be explained by peculiarities of organization of genetic determinants revealed in the genomes. Investigation of CO and formate consumption kinetics revealed that T. barophilus strain Ch5 was able to grow at concentrations close to the environmental ones. Thus, it was shown that hyperthermophilic archaea from deep-sea hydrothermal vents are able to utilize one-carbon substrates of abiotic origin both in the presence of an electron acceptor (sulfur) and in its absence. These processes were probably of importance under the conditions of the early Earth biosphere.



Characterization of extracellular yeast peptide factors and their stress-protective effect on probiotic lactic acid bacteria
Аннотация
Protective effect of the extracellular peptide fraction (reactivating factors, RF) produced by yeasts of various taxonomic groups (Saccharomyces cerevisiae, Kluyveromyces lactis, Candida utilis, and Yarrowia lipolytica) on probiotic lactic acid bacteria (LAB) Lactobacillus casei, L. acidophilus, and L. reuteri under bile salt (BS)-induced stress was shown. RF of all yeasts were shown to be of peptide nature; the active component of the S. cerevisiae RF was identified as a combination of low-molecular polypeptides with molecular masses of 0.6 to 1.5 kDa. The protective and reactivating effects of the yeast factors were not species-specific and were similar to those of the Luteococcus japonicus subsp. casei RF. In BS-treated cells of the tester bacteria, a protective effect was observed after 10-min preincubation of the LAB cell suspension with yeast RF: the number of surviving cells (CFU) was 2 to 4.5 times higher than in the control. The reactivating effect was observed when RF was added to LAB cell suspensions not later than 15 min after stress treatment. It was less pronounced than the protector effect, with the CFU number 1 to 3 times that of the control. Both the protector and the reactivating effects were most pronounced in the S. cerevisiae and decreased in the row C. utilis > K. lactis > Y. lipolytica. The efficiency of protective action of yeast RF was found to depend on the properties of recipient LAB cells, with the L. casei strain being most sensitive to BS treatment. In both variants, the highest protective effect of RF (increase in the CFU number) was observed for L. acidophilus, while the least pronounced one was observed for L. casei. The reasons for application of the LAB strains combining high stress resistance and high response to stress-protecting metabolites, including RF factors, as probiotics, is discussed.



Effect of illumination intensity and inhibition of carotenoid biosynthesis on assembly of peripheral light-harvesting complexes in purple sulfur bacteria Allochromatium vinosum ATCC 17899
Аннотация
Effect of illumination intensity and inhibition of carotenoid biosynthesis on assemblage of different spectral types of LH2 complexes in a purple sulfur bacterium Allochromatium (Alc.) vinosum ATCC 17899 was studied. Under illumination of 1200 and 500 lx, the complexes B800-850 and B800-840 and B800-820 were assembled. While rhodopine was the major carotenoid in all spectral types of the LH2 complex, a certain increase in the content of carotenoids with higher numbers of conjugated double bonds (anhydrorhodovibrin and didehydrorhodopin) was observed in the B800-820 complex. At 1200 lx, the cells grew slowly at diphenylamine (DPA) concentrations not exceeding 53 μM, while at illumination intensity decreased to 500 lx they could grow at 71 μM DPA (DPA cells). Independent on illumination level, the inhibitor is supposed to impair the functioning of phytoene synthetase (resulting in a decrease in the total carotenoid content) and of phytoene desaturase, which results in formation of neurosporene hydroxy derivatives and ζ-carotene. In the cells grown at 500 lx, small amounts of spheroidene and OH-spheroidene were detected. These carotenoids were originally found under conditions of carotenoid synthesis inhibition in bacteria with spirilloxanthin as the major carotenoid. Carotenoid content in the LH2 complexes isolated from the DPA cells was ~15% of the control (without inhibition) for the B800-850 and ~20% of the control for the B800-820 and B800-840 DPA complexes. Compared to the DPA pigment-containing membranes, the DPA complexes were enriched with carotenoids due to disintegration of some carotenoidless complexes in the course of isolation. These results support the supposition that some of the B800-820, B800-840, and B800-850 complexes may be assembled in the cells of Alc. vinosum ATCC 17899 without carotenoids. Comparison of the characteristics obtained for Alc. vinosum ATCC 17899 and the literature data on strain D of the same bacteria shows that they belong to two different strains, rather than to one as was previously supposed.



Structure characterization of a methylated ester biosurfactant produced by a newly isolated Dietzia cinnamea KA1
Аннотация
Biosurfactans are amphiphilic compounds synthesized by a wide group of microorganisms and tend to interact with surfaces of different polarities. In the present study we purified and characterized a biosurfactant produced by Dietzia cinnamea KA-1 when cultured by n-hexadecane as sole carbon source. The crude biosurfactant was extracted with ethyl acetate and purified by freezing at–20°C and then silica Gel column chromatography. The purified biosurfactant applied for more characterization using Elemental analysis (CHNS), Fourier Transform Infrared Spectroscopy (FTIR), Mass Spectroscopy (MS) and Nuclear Magnetic Resonance (1H and 13C-NMR) analysis. CHNS analysis showed the presence of C (74.92%) and H (11.63%) but not N or S. Functional groups of OH, CH2, CH3, C=O and aliphatic C−O revealed by FTIR analysis. The presence and position of these groups were confirmed by NMR analysis, and molecular mass of biosurfactant calculated using MS analysis. Finally, the product characterized as a methylated ester compound with molecular formula of C21H42O4. This is the first report of biosurfactant of species D. cinnamea identified as ester, furthermore the ester was found to be in the methylated form.



Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae
Аннотация
A number of pathogenic fungi like Candida, cannot survive upon damage to mitochondrial DNA (mtDNA) while the budding yeast can tolerate the damage therefore we chose Saccharomyces cerevisiae as a model system for this study. Since a number of potent antifungals have originated from various natural sources, we decided to use a triterpenoid and tetraterpenoid in this study as an antifungal agent. Our data clearly indicates that terpenoids play a role in diminishing the mitochondrial content which results in altered level of reactive oxygen species (ROS) and ATP generation. Here, we report that triterpenoid and tetraterpenoid display MIC at 100 and 120 μg /mL respectively against S. cerevisiae. At MIC dose triterpenoid (Lupeol) treated cells showed relatively higher mitochondrial dysfunction as compared to tetraterpenoid, resulting high level of ROS generation in triterpenoid in comparison to tetraterpenoid treated cells. Whereas the ATP level decreases in triterpenoid treated cells while it remains same in tetraterpenoid treated cells. Hence triterpenoid showed more potent antifungal activity as compared to the tetraterpenoid at their MIC by targeting mitochondrial integrity. The outcome of the study is to decipher the mode of action of terpenoids which will be useful in designing of improved antifungal therapies and also accelerate the development of translational applications.



Taxonomic specificity of the sensitivity to the Wickerhamomyces bovis fungistatic mycocin
Аннотация
Wickerhamomyces bovis type strain was found to secrete a mycocin with a fungistatic effect at pH from 3.5 to 6.0. The peak of its activity occurred at pH 5.0 in the presence of 3% NaCl. Yeast species sensitive to this mycocin were located within the family Wickerhamomycetaceae and belonged to phylogenetically related genera Ambrosiozyma, Nakazawaea, Ogataea, and Peterozyma.



A novel uncultured bacterium of the family Gallionellaceae: Description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage
Аннотация
Drainage waters at the metal mining areas often have low pH and high content of dissolved metals due to oxidation of sulfide minerals. Extreme conditions limit microbial diversity in such habitats. A microbial community of cold acid mine drainage (6.5°C, pH 2.65) at the Sherlovaya Gora polymetallic open-cast mine (Transbaikal region, Eastern Siberia, Russia) was studied using metagenomic techniques. Most of microorganisms belonged to a single uncultured lineage representing a new species of the Betaproteobacteria genus Gallionella. Bacteria of the genera Thiobacillus, Acidobacterium, Acidisphaera, and Acidithiobacillus were the minor components of the community. Almost complete (3.4 Mb) composite genome of the new bacterial lineage designated Candidatus Gallionella acididurans ShG14-8 was reconstructed using metagenomic data. Genome analysis revealed that Fe(II) oxidation probably involved the cytochromes localized on the outer cell membrane. The electron transport chain included NADH dehydrogenase, a cytochrome bc1 complex, an alternative complex III, and bd-, cbb3-, and bo3-types cytochrome oxidases. Oxidation of reduced sulfur compounds probably involved the Sox system, sulfide–quinone oxidoreductase, adenyl sulfate reductase, and sulfate adenyltransferase. The genes involved in autotrophic carbon assimilation via the Calvin cycle were present, while no pathway for nitrogen fixation was revealed. High numbers of RND metal transporters and P type ATPases were probably responsible for resistance to heavy metals. The new microorganism was an aerobic chemolithoautotroph that belonged to the group of psychrotolerant iron- and sulfur-oxidizing acidophiles of the family Gallionellaceae, which are widely distributed in acid mine drainage.



A new Bacillus licheniformis mutant strain producing serine protease efficient for hydrolysis of soy meal proteins
Аннотация
Induced mutagenesis with γ-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366 D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheniformis-145. Samples of dry concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was established. Alkaline serine protease subtilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolicheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited proteolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5–11) and temperature (30–70°C). Efficient hydrolysis of extruded soybean meal protein at high concentrations (20 to 50%) in the reaction mixture was the main advantage of the Protolicheterm-145 preparation. Compared to the preparation obtained using the initial strain, the new preparation with increased proteolytic activity provided for more complete hydrolysis of the main non-nutritious anti-nutritional soy proteins (glycinin and β-conglycinin) with the yield of soluble protein increased by 19–28%, which decreased the cost of bioconversion of the proteinaceous material and indicated promise of the new preparation in resource-saving technologies for processing soybean meals and cakes.



Sulfate reduction and inorganic carbon assimilation in acidic thermal springs of the Kamchatka peninsula
Аннотация
Thermoacidophilic sulfate reduction, which remains a poorly studied process, was investigated in the present work. Radioisotope analysis with 35S-labeled sulfate was used to determine the rates of dissimilatory sulfate reduction in acidic thermal springs of Kamchatka, Russia. Sulfate reduction rates were found to vary from 0.054 to 12.9 nmol SO4/(cm3 day). The Oil Site spring (Uzon caldera, 60°C, pH 4.2) and Oreshek spring (Mutnovskii volcano, 91°C, pH 3.5) exhibited the highest activity of sulfate-reducing prokaryotes. Stable enrichment cultures reducing sulfate at pH and temperature values close to the environmental ones were obtained from these springs. Analysis of the 16S rRNA gene sequences revealed that a chemolithoautotrophic bacterium Thermodesulfobium sp. 3127-1 was responsible for sulfate reduction in the enrichment from the Oil Site spring. A chemoorganoheterotrophic archaeon Vulcanisaeta sp. 3102-1 (phylum Crenarchaeota) was identified in the enrichment from Oreshek spring. Thus, dissimilatory sulfate reduction under thermoacidophilic conditions was demonstrated and the agents responsible for this process were revealed.



Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community
Аннотация
Lytic action of an anaerobic proteolytic bacterium Proteinivorax tanatarense on organisms with different cell wall types was studied. In the absence of photosynthetic oxygen release, this proteolytic was able to grow on intact biomass of cyanobacteria belonging to various systematic groups. It is probably their usual saprotrophic satellite responsible for the regulation of abundance of primary producers during the dark phase. Growth also occurred on the biomass of a nonphototrophic gram-negative microorganism Halomonas campisalis, a common component of alkaliphilic microbial communities. Comparative analysis of the interaction of the proteolytic with H. campisalis cells at different physiological states revealed the lytic action to be restricted to dead and/or weakened cells, rather than to the actively dividing ones. Strict specificity of the action of the proteolytic bacterium on gram-negative microorganisms with no effect on gram-positive ones was shown.



Yeasts in Hevea brasiliensis latex
Аннотация
Yeast abundance and species diversity in the latex of rubber tree Hevea brasiliensis (Willd. ex Juss.) Müll. Arg., on its green leaves, and in soil below the plant were studied. The yeasts present in the fresh latex in numbers of up to 5.5 log(CFU/g) were almost exclusively represented by the species Candida heveicola. This species was previously isolated from Hevea latex in China. In the course of natural modification of the latex (turned from liquid to solid form), yeast diversity increased, while yeast abundance decreased. The yeasts in thickened and solidified latex were represented by typical epiphytic and ubiquitous species: Kodamea ohmeri, Debaryomyces hansenii, Rhodotorula mucilaginosa, and synanthropic species Candida parapsilosis and Cutaneotrichosporon arboriformis. The role of yeasts in latex modification at the initial stages of succession and their probable role in development of antifungal activity in the latex are discussed.



Broiler chicken cecal microbiocenoses depending on mixed fodder
Аннотация
Molecular genetic techniques (NGS sequencing and quantitative PCR) were used to determine the composition of the cecal bacterial community of broiler chickens fed with different mixed fodder. The cecal microbiome exhibited taxonomic diversity, with both typical inhabitants of avian intestine belonging to the families Clostridiaceae, Eubacteriaceae, and Lactobacillaceae and to the phylum Bacteroidetes, and new unidentified taxa, as well as bacteria of the families Lachnospiraceae and Ruminococcaceae, which were previously considered restricted to the rumen microbiota. Contrary to traditional concepts, enterococci and bifidobacteria were among the minor components of the community, lactate-fermenting species were absent, and typical avian pathogens of the genus Staphylococcus were detected but seldom. Members of the family Suterellaceae and the genus Gallibacterium, which are responsible for avian respiratory infections, were also detected. Significant fluctuations of abundance and composition of microbial groups within the cecal community and of the parameters of broiler productivity were found to occur depending on the feed allowance. Cellulose content in the feed had the most pronounced effect on the composition and structure of bacterial communities. Decreased cellulose content resulted in a decrease of bacterial abundance by an order of magnitude and in increased ratios of members of the phylum Bacteroidetes and the family Clostridiaceae, which possess the enzymes degrading starch polysaccharides. Abundance of the normal inhabitants of avian intestine belonging to the genus Lactobacillus and the order Bacillales decreased, while the share of Escherichia and members of the family Sutterellaceae increased, including some species capable of causing dysbiotic changes in the avian intestine. No significant change in the abundance of cellulolytics of the families Ruminococcaceae, Lachnospiraceae, and Eubacteriaceae was observed.



Protective formula and preservation conditions for the endoparasitic fungus, Esteya vermicola
Аннотация
The endoparasitic nematophagous fungus, Esteya vermicola, is a bio-control agent with demonstrated ability to attack pinewood nematode (Bursaphelenchus xylophilus). An optimized solution for the protection and preservation of E. vermicola conidia is needed in order to ensure their survival during transportation, preservation, and application. Five protectants, kaolin, arabinose, sorbitol, PEG8000, and Span 80, were selected from 34 agents. These were incorporated into calcium alginate gel capsules at the following concentrations: 10% kaolin, 0.1% Span 80, 1% arabinose, 5% sorbitol, and 5% PEG8000. The improved diffluent formula contained 69.9% soluble starch, 14% wheat flour, 5% PEG8000, 0.1% span 80, 1% arabinose and 10% skim milk. The viability of E. vermicola conidia preserved in the protectant (5% sorbitol and 20% PEG8000) at six temperatures,–70,–20, 4, 26, 37°C, and room temperature (uncontrolled), was also assessed. The highest viability after storage for one month was achieved at–70°C.



Short Communications
Role of proton-motive force in adhesion and biofilm formation by staphylococcus epidermidis



A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models


