Variation of the Structure-and-Phase Condition and Physical and Mechanical Properties of Cold-Deformed Leaded Brass Under Heating


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The methods of optical and scanning electron microscopy, microhardness measurement, differential scanning calorimetry (DSC), dilatometry, dynamic mechanical analysis, and hydrostatic weighing are used to study the structure and the physical and mechanical properties (density, microhardness, modulus of elasticity, coefficient of linear thermal expansion) of cold-deformed brass LS59-1 in the initial condition and after heating to 800°C. The DSC heating curve exhibits exo- and endothermic effects due to stress relaxation and retrogression (the exothermic effect at 115 – 235°C), melting of lead segregations (the endothermic effect at about 328°C), transition of the β′-phase into a disordered β -condition (the endothermic effect with minimum at 458°C), and transition of the brass into a single-phase β -condition (the endothermic effect at 642 – 747°C with minimum at 721°C).

Sobre autores

A. Illarionov

Ural Federal University after the First President of Russia B. N. Eltsyn

Autor responsável pela correspondência
Email: illarionovag@mail.ru
Rússia, Ekaterinburg

Yu. Loginov

Ural Federal University after the First President of Russia B. N. Eltsyn

Email: illarionovag@mail.ru
Rússia, Ekaterinburg

S. Stepanov

Ural Federal University after the First President of Russia B. N. Eltsyn

Email: illarionovag@mail.ru
Rússia, Ekaterinburg

S. Illarionova

Ural Federal University after the First President of Russia B. N. Eltsyn

Email: illarionovag@mail.ru
Rússia, Ekaterinburg

P. Radaev

Ural Federal University after the First President of Russia B. N. Eltsyn

Email: illarionovag@mail.ru
Rússia, Ekaterinburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019