Strange Behavior of Natural Oscillations of an Elastic Body with a Blunted Peak
- Авторы: Nazarov S.A.1,2
- 
							Учреждения: 
							- St. Petersburg University
- Institute for Problems in Mechanical Engineering
 
- Выпуск: Том 54, № 5 (2019)
- Страницы: 694-708
- Раздел: Article
- URL: https://journals.rcsi.science/0025-6544/article/view/164156
- DOI: https://doi.org/10.3103/S0025654419050121
- ID: 164156
Цитировать
Аннотация
The point of a peak on the surface of an elastic body Ω generates a continuous spectrum inducing wave processes in a finite volume (“black holes” for elastic waves). The spectrum of a body Ωh with a blunted peak is discrete, but the normal eigenvalues take on “strange behavior” as the length h of the broken tip tends to zero. In different situations, eigenvalues are revealed that do not leave the small neighborhood of the fixed point or, conversely, fall off along the real axis with high velocity, but smoothly decrease to the lower limit of the continuous spectrum of the body Ω. The chaotic wandering of eigenvalues above the second limit may occur. A new way of forming the continuous spectrum of the body Ω with a peak from the family of discrete spectra of the bodies Ωh with a blunted peak, h > 0, has been discovered.
Об авторах
S. Nazarov
St. Petersburg University; Institute for Problems in Mechanical Engineering
							Автор, ответственный за переписку.
							Email: srgnazarov@yahoo.co.uk
				                					                																			                												                	Россия, 							St. Petersburg; St. Petersburg						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					