Generalization of the Kirchhoff theory to elastic wave diffraction problems
- Авторы: Israilov M.S.1, Nosov S.E.1
- 
							Учреждения: 
							- Research Institute of Mathematical Physics and Seismodynamics
 
- Выпуск: Том 52, № 1 (2017)
- Страницы: 35-40
- Раздел: Article
- URL: https://journals.rcsi.science/0025-6544/article/view/162850
- DOI: https://doi.org/10.3103/S0025654417010058
- ID: 162850
Цитировать
Аннотация
The Kirchhoff approximation in the theory of diffraction of acoustic and electromagnetic waves by plane screens assumes that the field and its normal derivative on the part of the plane outside the screen coincides with the incident wave field and its normal derivative, respectively. This assumption reduces the problem of wave diffraction by a plane screen to the Dirichlet or Neumann problems for the half-space (or the half-plane in the two-dimensional case) and permits immediately writing out an approximate analytical solution. The present paper is the first to generalize this approach to elastic wave diffraction. We use the problem of diffraction of a shear SH-wave by a half-plane to show that the Kirchhoff theory gives a good approximation to the exact solution. The discrepancies mainly arise near the screen, i.e., in the region where the influence of the boundary conditions is maximal.
Ключевые слова
Об авторах
M. Israilov
Research Institute of Mathematical Physics and Seismodynamics
							Автор, ответственный за переписку.
							Email: israiler@hotmail.com
				                					                																			                												                	Россия, 							ul. Kievskaya 33, Groznyy, 364037						
S. Nosov
Research Institute of Mathematical Physics and Seismodynamics
														Email: israiler@hotmail.com
				                					                																			                												                	Россия, 							ul. Kievskaya 33, Groznyy, 364037						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					