Nonlinear Deformation Model of Crystal Media Allowing Martensite Transformations: Solution of Static Equations
- 作者: Aero E.L.1, Bulygin A.N.1, Pavlov Y.V.1
- 
							隶属关系: 
							- Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences
 
- 期: 卷 53, 编号 6 (2018)
- 页面: 623-632
- 栏目: Article
- URL: https://journals.rcsi.science/0025-6544/article/view/163450
- DOI: https://doi.org/10.3103/S0025654418060043
- ID: 163450
如何引用文章
详细
Mathematical methods are developed for solving the statics equations of a non-linear model of deforming a crystalline medium with a complex lattice that allows martensitic transformations. In the nonlinear theory, the deformation describes the vector of the acoustic mode U(t, x, y, z) and the vector of the optical mode u(t, x, y, z). They are found from a system of six related nonlinear equations. The vector of the acoustic mode U(t, x, y, z) is sought in the Papkovich–Neuberform. A system of six related nonlinear equations is transformed into a system of individual equations. The equations of the optical mode u(t, x, y, z) are reduced to one sine-Gordon equation with a variable coefficient (amplitude) in front of the sine and two Poisson equations. The definition of the acoustic mode is reduced to solving the scalar and vector Poisson equations. For a constant-amplitude optical mode, particular solutions were found. In the case of plane deformation, a class of doubly-periodic solutions is constructed, which are expressed in terms of Jacobi elliptic functions. The analysis of the solutions found is conducted. It is shown that the nonlinear theory describes the fragmentation of the crystalline medium, the formation of boundaries between fragments, phase transformations, the formation of defects and other deformation features that are realized in the field of high external force effects and which are not described by classical continuum mechanics.
作者简介
E. Aero
Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences
														Email: bulygin_an@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Bol’shoy pr. V. O. 61, St. Petersburg, 199078						
A. Bulygin
Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: bulygin_an@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Bol’shoy pr. V. O. 61, St. Petersburg, 199078						
Yu. Pavlov
Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences
														Email: bulygin_an@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Bol’shoy pr. V. O. 61, St. Petersburg, 199078						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					