MIXED-LAYER GLAUCONITE–NONTRONITE CLAY MINERALS FROM BIOMORPHOSES AND HOST ROCKS OF THE GZHEL STAGE MOSCOW REGION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

During the study of the internal structure of the recently described new species of sponge Gzhelistella cornigera [Davydov et al., 2023] and fusulinids from the Gzhelian stage of the Moscow region, numerous polymineral biomorphoses were discovered, composed of mixed-layer clay minerals, goethite, chalcedony and sanidine. A detailed structural and crystallochemical study of clay minerals from biomorphoses and the host rock has revealed for the first time the structural heterogeneity of these mixed-layer minerals. Using the diffraction pattern modeling method, it has been established that the clay material in the studied samples is represented by two authigenic mixed-layer phases, glauconite-nontronite, with a contrasting relationship between different layers content and/or order in their alternation, but identical structural and crystallochemical characteristics of the crystallites. It has been shown that such formations should be considered as a single heterogeneous mixed-layer structure, in which the relationship and/or order in the alternation of different layer types in crystals vary within certain limits. It has been established that the structural and crystallochemical characteristics of mixed-layer minerals from brown biomorphs and from host rocks are almost indistinguishable, whereas for green biomorphs these parameters are significantly different. It is assumed that newly formed clay minerals from host rocks, like their brown analogs, were formed under similar physicochemical conditions. It is also obvious that during the formation of mixed-layer phases, brown biomorphoses were already deprived of biogenic organic matter, while green biomorphoses retained it in sufficient quantity to locally change the environmental conditions locally within themselves.

作者简介

B. Sakharov

Geological Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sakharovba@gmail.com
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia

Y. Yashunsky

Geological Institute of the Russian Academy of Sciences

Email: yryashunsky@gmail.com
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia

A. Davydov

Borissiak Paleontological Institute of the Russian Academy of Sciences

Email: alexander.paleo2d@yandex.ru
Profsoyuznaya str., 123, Moscow, 117647 Russia

V. Taskaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: ttvtest@yandex.ru
Staromonetny lane, 35, Moscow, 119017 Russia

I. Morozov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: ivan.morozov@yandex.ru
Staromonetny lane, 35, Moscow, 119017 Russia

参考

  1. Гаврилов Ю.О., Щепетова Е.В. Диагенетическое минералообразование в биогенных структурах (палеоген, Северо-Восточный Кавказ) // Литология и полез. ископаемые. 2000. № 6. С. 613–623.
  2. Грим Р.Е. Минералогия глин. М.: ИЛ, 1956. 457 с.
  3. Дриц В.А., Сахаров Б.А. Рентгеноструктурный анализ смешанослойных минералов. М.: Наука, 1976. 256 с.
  4. Дриц В.А., Коссовская А.Г. Генетические типы диоктаэдрических слюд. Сообщение 1. Семейство железисто-магнезиальных слюд (глаукониты, селадониты) // Литология и полез. ископаемые. 1986. № 5. С. 19–33.
  5. Дриц В.А., Коссовская А.Г. Глинистые минералы: смектиты, смешанослойные образования М.: Наука, 1990. 214 с. (Тр. ГИН АН СССР. Вып. 446)
  6. Дриц В.А., Коссовская А.Г. Глинистые минералы: слюды, хлориты. М.: Наука, 1991. 177 с. (Тр. ГИН АН СССР. Вып. 465)
  7. Дриц В.А., Каменева М.Ю., Сахаров Б.А. и др. Проблемы определения реальной структуры глауконитов и родственных тонкодисперсных филлосиликатов. Новосибирск: Наука, 1993. 200 с.
  8. Дриц В.А., Сахаров Б.А., Ивановская Т.А., Покровская Е.В. Микроуровень кристаллохимической гетерогенности докембрийских глобулярных диоктаэдрических слюдистых минералов // Литология и полез. ископаемые. 2013. № 6. С. 552–580.
  9. Исакова Т.И. Rauserites rossicus (Schellwien) [Fusulinida] из стратотипа, неостратотипа и гиперстратотипа гжельского яруса // Проблемы стратиграфїі кам’яновугільної системи. Кѝев, 2008. С. 114–119.
  10. Никитин С.Н. Каменноугольные отложения Подмосковного края и артезианские воды под Москвой // Тр. Геолкома. 1890. Т. 5. № 5. 181 с.
  11. Николаева И.В. Минералы группы глауконита в осадочных формациях. Новосибирск: Наука, 1977. 321 с.
  12. Рентгеновские методы изучения и структура глинистых минералов // Под ред. Г. Брауна. М.: Мир, 1965. 600 с.
  13. Рентгенография основных типов породообразующих минералов (слоистые и каркасные силикаты) // Под ред. В.А. Франк-Каменецкого. Л.: Недра, 1983. 360 с.
  14. Ципурский С.И., Ивановская Т.А. Кристаллохимия глобулярных слоистых силикатов // Литология и полез. ископаемые. 1988. № 1. С. 41–49.
  15. Alekseev A.S., Goreva N.V., Isakova T.N. et al. Gzhel section. Stratotype of the Gzhelian stage // Type and reference carboniferous sections in the south part of the Moscow basin. Field trip guidebook of International Field Meeting of the I.U.G.S. Subcommission on Carboniferous Stratigraphy “The historical type sections. proposed and potential GSSP of the carboniferous in Russia”. August 11–12. 2009. Moscow, 2009. P. 115–137.
  16. Davydov A.E., Yashunsky Yu.V., Mirantsev G.V., Krutykh A.A. New Hypercalcified Calcareous Sponges from the Gzhelian Stage of the Moscow Region // Paleontological Journal. 2023. V. 57(11). P. 1325–1351.
  17. Cesari M., Morelli G. L., Favretto L. The determination of the type of stacking in mixed-layer clay minerals // Acta Crystallogr. 1965. V. 18. P. 189–196.
  18. Crystal structures of clay minerals and their X-ray identification / Eds G.W. Brindley, G. Brown // Mineralogical Society of Great Britain and Ireland. 1980. V. 5. 495 p.
  19. Drits V.A. Mixed-layer minerals: Diffraction methods and structural features // Proc. In m. Clay. Conf., Denver, 1985 / Ed. L.G. Schultz, H. van Olphen, F.A. Mampton. Bloomington (Ind.): Clay Miner. Soc., 1987. P. 33–45.
  20. Drits V.A., Tchoubar C. X-Ray diffraction by disordered lamellar structures. Berlin: Springer-Verlag, 1990. 371 p.
  21. Guggenheim S., Adams J.M., Bain D.C. et al. Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006 // Clay Clay Miner. 2006. V. 54. P. 761–772.
  22. Moore D.M., Reynolds R.C. X-Ray diffraction and the identification and analysis of clay minerals. Oxford: University Press, 1989. 332 p.
  23. Rieder M., Cavazzini G., D’yakonov Y. et al. Nomenclature of the micas // Can. Mineral. 1998. V. 36. P. 41–48.
  24. Sakharov B.A., Besson G., Drits V. A. et al. X-ray study of the nature of stacking faults in the structure of glauconites // Clay Miner. 1990. V. 25. P. 419–435.
  25. Sakharov B.A., Lindgreen H., Salyn A.L. et al. Determination of illite-smectite structures using multispecimen X-ray diffraction profile filling // Clay Clay Miner. 1999. V. 47. P. 555–566.
  26. Sakharov B.A., Lanson B. X-ray identification of mixed-layer structures // Handbook of Clay Science / 2тd Edition. Part B. Techniques and Applications. Chapter 2.3. Modeling of diffraction effects / Eds F. Bergaya, G. Lagaly. Amsterdam, Boston, Heidelberg, London, N.Y., Oxford: Elsevier, 2013. P. 51–135.
  27. Yashunsky Yu.V., Davydov A.E., Sakharov B.A. et al. Polymineral biomorphoses in basal skeletons of hypercalcified sponges and fusulinid shells from the Gzhelian stage of the Moscow region // Paleontological Journal. 2025. V. 59. P. 85–104.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».