To assess the conditions of carbonate rocks formation on the Karelian craton in the paleoproterozoic based on geochemical data
- Authors: Kondrashova N.I.1,2, Medvedev P.V.1,2, Lyutikov A.V.1
-
Affiliations:
- Institute of Geology, Karelian Research Center of RAS
- Petrozavodsk State University
- Issue: No 1 (2025)
- Pages: 100-128
- Section: Articles
- URL: https://journals.rcsi.science/0024-497X/article/view/289066
- DOI: https://doi.org/10.31857/S0024497X25010069
- EDN: https://elibrary.ru/CIFNFR
- ID: 289066
Cite item
Abstract
We present a comparative analysis of the carbonate sedimentation conditions in two Paleoproterozoic basins located in the south-east and north of the Late Archean Karelian craton in the North Onega and Pana-Kuolayarvi synclinories. The carbonate accumulation began in both paleobasins during the Late Jatulian. Carbonate rocks in the Onega sequence are predominantly dolostones, including stromatolite varieties, whereas in the Pan Kuolayarvi succession, they comprise both dolostones and limestones. During the Late Jatulian, cyanobacteria thrive in the coastal marine settings of the Onega basin. Some portions of the basin may have been disconnected from the open sean at this time, facilitating the development of evaporite processes. There was no such diversity of cyanobacterial communities in the Pana-Kuolayarvi basin, and there was no evaporitization. According to geological and lithological data, shallow, lagoon, playa lake and sabha environments existed in the Onega paleobasin in the Late Jatulian time. In the Pana-Kuolayarvi paleobasin, the conditions are shallow, at times with increased water input from the continent, and open marine settings. The geochemical characteristics of the carbonate rocks we obtained lead to the same facies conclusions. The stromatolites in the Onega pleobasin were formed mainly in the intertidal zone, at times the connection of the basin with the open sea was reduced and the conditions approached the lagoon. The oxic conditions existed for a limited time during Jatulian only in the Onega basin. Basically, in the both sedimentation basins the oxygen content was close to the boundary of the transition from disoxic to oxic conditions. Fluctuations in the magnitude of the Ce anomaly in stromatolite laminae reflect changes in the oxygen content in water directly in contact with the stromatolite buildup, which creates the possibility of the existence of oxygen “oases” in the paleobasin with disoxic and oxygen-deficient conditions. Conclusions about redox conditions existing in the paleobasin, based only on geochemical markers, are not sufficient. Conclusions regarding the conditions prevailing in a paleobasin with carbonate sedimentation agree maximally with geological and lithological data based on a set of geochemical characteristics, including REE spectra, values of Ce and Eu anomalies, and ratios of individual lanthanides. These conclusions are supplemented by an analysis of paired correlations between redox-sensitive elements.
Full Text

About the authors
N. I. Kondrashova
Institute of Geology, Karelian Research Center of RAS; Petrozavodsk State University
Author for correspondence.
Email: kondr@krc.karelia.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910; Lenin ave., 33, Petrozavodsk, 185910
P. V. Medvedev
Institute of Geology, Karelian Research Center of RAS; Petrozavodsk State University
Email: kondr@krc.karelia.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910; Lenin ave., 33, Petrozavodsk, 185910
A. V. Lyutikov
Institute of Geology, Karelian Research Center of RAS
Email: kondr@krc.karelia.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910
References
- Геология шунгитоносных, вулканогенно-осадочных образований протерозоя Карелии / Ред. В.А. Соколов. Петрозаводск: “Карелия”, 1982. 204 с.
- Голубев А.И., Ахмедов А.М., Галдобина Л.П. Геохимия черносланцевых комплексов нижнего протерозоя Карело-Кольского региона. Л.: Наука, 1984. 192 с.
- Горохов И.М., Кузнецов А.Б., Мележик В.А. и др. Изотопный состав стронция в верхнеятулийских доломитах туломозерской свиты, Юго-Восточная Карелия // Доклады Академии наук. 1998. Т. 360. № 4. С. 533–536.
- Горохов И.М., Кузнецов А.Б., Азимов П.Я. и др. Sr- и C-изотопная хемостратиграфия метакарбонатных пород палеопротерозойской сортавальской серии, Фенноскандинавский щит, Северное Приладожье // Стратиграфия. Геол. корреляция. 2021. Т. 29 № 2. С. 3–22.
- https://doi.org/10.31857/S0869592X21020022
- Григорьев Н.А. Распределение химических элементов в верхней части континентальной коры. Екатеринбург: УрО РАН, 2009. 162 с.
- Дуб С.А., Мизенс Г.А. Геохимия редкоземельных элементов и цериевая аномалия в морских осадочных карбонатах: современные представления // Вестник геонаук. 2023. Т. 347. № 11. С. 3–17. https://doi.org/10.19110/geov.2023.11.1
- Кузнецов А.Б., Горохов И.М., Азимов П.Я. и др. Sr- и С-хемостратиграфический потенциал палеопротерозойских осадочных карбонатов в условиях среднетемпературного метаморфизма: мраморы Рускеалы, Карелия // Петрология. 2021. Т. 29. № 2. С. 172–194. https://doi.org/10.31857/S0869590321010039
- Кузнецов А.Б., Семихатов М.А., Горохов И.М. Возможности стронциевой изотопной хемостратиграфии в решении проблем стратиграфии верхнего протерозоя (рифея и венда) // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 6. С. 3–25. https://doi.org/10.7868/S0869592X14060039
- Куликов В.С., Куликова В.В. Куолаярвинский синклинорий: новый взгляд на геологическое строение и сводный разрез // Труды Карельского научного центра РАН. 2014. № 1. С. 28–38.
- Куликов В.С., Светов С.А., Слабунов А.И. и др. Геологическая карта Юго-Восточной Фенноскандии масштаба 1 : 750000: новые подходы к составлению // Труды Карельского научного центра РАН. 2017. № 2. С. 3–41. https://doi.org/10.17076/geo444
- Макарихин В.В., Кононова Г.М. Фитолиты нижнего протерозоя Карелии. Л.: Наука, 1983. 180 с.
- Макарихин В.В., Медведев П.В., Рычанчик Д.В. Роль биотического фактора в ятулийском седиментогенезе // Геодинамика, магматизм, седиментогенез и минерагения Северо-Запада России: материалы Всероссийской конференции, Петрозаводск, 12–15 ноября 2007 / Ред. Д.В. Рундквист и др. Петрозаводск: ИГ КарНЦ РАН, 2007. С. 241–245.
- Маслов А.В., Гражданкин Д.В., Дуб С.А. и др. Укская свита верхнего рифея Южного Урала: седиментология и геохимия (первые результаты исследований) // Литосфера. 2019. Т. 19. № 5. С. 659–686. https://doi.org/10.24930/1681-9004-2019-19-5-659-686
- Медведев П.В., Макарихин В.В. Признаки участия живых организмов в палеопротерозойском осадконакоплении на территории Фенноскандинавского щита // Ленинградская школа литологии. Материалы Всероссийского литологического совещания, посвященного 100-летию со дня рождения Л.Б. Рухина (Санкт-Петербург, 25–29 сентября 2012 г.). Т. II. СПб.: СПбГУ, 2012. С. 226–228.
- Мизенс Г.А., Дуб С.А. Геохимия известняков пограничного интервала нижнего–среднего карбона на Южном и Среднем Урале // Литосфера. 2022. Т. 22. № 3. С. 300–326.
- Общая стратиграфическая шкала нижнего докембрия России. Объяснительная записка. Апатиты: КНЦ РАН, 2002. 13 с.
- Овчинникова Г.В., Кузнецов А.Б., Мележик В.А. и др. Pb-Pb возраст ятулийских карбонатных пород: туломозерская свита юго-восточной Карелии // Стратиграфия. Геол. корреляция. 2007. Т. 15. № 4. С. 20–33.
- Онежская палеопротерозойская структура (геология, тектоника, глубинное строение и минерагения) / Отв. ред. Л.В. Глушанин, Н.В. Шаров, В.В. Щипцов. Петрозаводск: Карельский научный центр РАН, 2011. 431 с.
- Сацук Ю.И., Макарихин В.В., Медведев П.В. Геология ятулия Онего-Сегозерского водораздела. Л.: Наука, 1988. 96 с.
- Светов С.А., Степанова А.В., Чаженгина С.Ю. и др. Прецизионный (ICP-MS, LA-ICP-MS) анализ состава горных пород и минералов: методика и оценка точности результатов на примере раннедокембрийских мафитовых комплексов // Труды Карельского научного центра РАН. 2015. № 7. С. 54–73.
- Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Холодов В.Н., Недумов Р.И. О геохимических критериях появления сероводородного заражения в водах древних водоемах // Изв. АН СССР. Сер. геол. 1991. № 12. С. 74–82.
- Aubineaua J., Albania A.E., Bekker A. et al. Trace element perspective into the ca. 2.1-billion-year-old shallow-marine microbial mats from the Francevillian Group, Gabon // Chem. Geol. 2020. V. 543. P. 1–14. https://doi.org/10.1016/j.chemgeo.2020.119620
- Bonnand P., Lalonde S.V., Boyet M. et al. Post-depositional REE mobility in a Paleoarchean banded iron formation revealed by La-Ce geochronology: A cautionary tale for signals of ancient oxygenation // Earth Planet. Sci. Lett. 2020. V. 547. 116452. https://doi.org/10.1016/j.epsl.2020.116452
- Bontognali T.R.R., Vasconcelos C., Warthmann R.J. et al. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates) // Sedimentology. 2010. V. 57. P. 824–844.
- Gregg J.M., Bish D.L., Kaczmarek S.E. et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review // Sedimentology. 2015. V. 62. Iss. 6. P. 1749–1769. https://doi.org/10.1111/sed.12202
- Franchi F., Hofmann A., Cavalazzi B. et al. Differentiating marine vs hydrothermal processes in Devonian carbonate mounds using rare earth elements (KessKess mounds, Anti-Atlas, Morocco) // Chem. Geol. 2015. V. 409. P. 69–86.
- Franchi F. Petrographic and geochemical characterization of the Lower Transvaal Supergroup stromatolitic dolostones (Kanye Basin, Botswana) // Precambrian Res. 2018. V. 310. P. 93–113. https://doi.org/10.1016/j.precamres.2018.02.018
- Hannah J.L., Stein H.J., Zimmerman A. et al. Re-Os geochronology of shungite: a 2.05 Ga fossil oil field in Karelia // Geochim. Cosmochim. Acta. 2008. V. 72. Iss. 12. P. 351.
- Hatch J.R., Leventhal J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dermis Limestone, Wabaunsee County, Kansas, USA // Chem. Geol. 1992. V. 99. P. 65–82.
- Hickman-Lewis K., Gourcerol B., Westall F. et al. Reconstructing Palaeoarchaean microbial biomes Ÿourishing in the presence of emergent landmasses using trace and rare earth element systematics // Precambrian Res. 2020. V. 342. P. 1–25. https://doi.org/10.1016/j.precamres.2020.105689
- Hohl S.V., Viehmann S. Stromatolites as geochemical archives to reconstruct microbial habitats through deep time: Potential and pitfalls of novel radiogenic and stable isotope systems // Earth-Sci. Rev. 2021. V. 218. P. 103683. https://doi.org/10.1016/j.earscirev.2021.103683
- Jones В., Manning D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones // Chem. Geol. 1994. V. 111. P. 111–129.
- Karhu J.A. Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in Fennoscandian Shield // Geol. Surv. Finland Bull. 1993. V. 371. P. 1–87.
- Kuznetzov A.B., Melezhik V.A., Gorokhov I.M. et al. Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: The Tulomozero Formation, SE Fennoscandian Shield // Precambrian Res. 2010. V. 182. Iss. 4. P. 300–312. https://doi.org/10.1016/j.precamres.2010.05.006
- Lawrence M.G., Greig A., Collerson K.D., Kamber B.S. Rare earth element and yttrium variability in South East Queensland waterways // Aquatic Geochemistry. 2006. V. 12. P. 39–72. https://doi.org/10.1007/s10498-005-4471-8
- Lewan M.D. Factors controlling the proportionality of vanadium to nickel in crude oils // Geochim. Cosmochim. Acta. 1984. V. 48. P. 2231–2238.
- Melezhik V.A., Fallick A.E., Medvedev P.V., Makarikhin V.V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite -“red beds” association in a global context: a case for the world-wide signal enhanced by a local environment // Earth-Sci. Rev. 1999. V. 48. P. 71–120.
- Melezhik V.A., Fallick A.E., Brasier A.T., Lepland A. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi-Jatuli to Shunga events // Earth-Science Reviews. 2015. V. 147. P. 65–98. https://doi.org/10.1016/j.earscirev.2015.05.005
- Melezhik VA., Fallick A.E., Rychanchik D.V., Kuznetsov A.B. Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, δ13C excursions and the rise of atmospheric oxygen // Terra Nova. 2005. V. 17. P. 141–148.
- Melezhik VA., Huhma H., Condon D.J. et al. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event // Geology. 2007. V. 35. P. 655–658.
- Melezhik V.A., Medvedev P.V., Svetov S.A. The Onega Basin // Reading the Archive of Earth’s Oxygenation. V. 1 / Eds V.A. Melezhik, A.R. Prave, E.J. Hansk. Berlin, Heidelberg: Springer-Verlag, 2013. P. 387–490. https://doi.org/10.1007/978-3-642-29682-6_9
- Reading the Archive of Earth’s Oxygenation. Berlin, Heidelberg: Springer-Verlag, 2013. V. 1–3. https://doi.org/10.1007/978-3-642-29682-6
- Ribeiro T.S., Misi A., dos Santos de Oliveira L.R. et al. Evidence of Paleoproterozoic phosphogenesis in the Salvador-Curaca Orogen (Tanque Novo-Ipira Complex), northeastern Sao Francisco Craton, Brazil // Brazilian Journal of Geology. 2021. V. 51(3): e20190137. P. 1–30. https://doi.org/10.1590/2317-4889202120190137
- Rico K.I., Sheldon N.D., Kinsman-Costello L.E. Associations between redox-sensitive trace metals and microbial communities in a Proterozoic Ocean analogue // Geobiology. 2020. V. 18. P. 462–475. doi: 10.1111/gbi.12388
- Rodler A.S., Hohl S.V., Guo Q., Frei R. Chromium isotope stratigraphy of Ediacaran cap dolostones, Doushantuo Formation, South China // Chem. Geol. 2016. V. 436. P. 24–34. https://doi.org/10.1016/j.chemgeo.2016.05.001
- Scott C., Lyons T.W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies // Chem. Geol. 2012. V. 324–325. P. 19–27. https://doi.org/10.1016/j.chemgeo.2012.05.012
- Swart P.K. The geochemistry of carbonate diagenesis: the past, present and future // Sedimentology. 2015. V. 62. P. 1233–1304. https://doi.org/10.1111/sed.12205
- Tang L., Santosh M., Tsunogae T., Maruoka T. Paleoproterozoic meta-carbonates from the central segment of the Trans-North China Orogen: Zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes // Precambrian Res. 2016. V. 284. P. 14–29. https://doi.org/10.1016/j.precamres.2016.08.001
- Tobia F.H., Aqrawi A.M. Geochemistry of rare earth elements in carbonate rocks of the Mirga Mir Formation (Lower Triassic), Kurdistan Region, Iraq // Arab. J. Geosci. 2016. V. 9. P. 259. https://doi.org/10.1007/s12517-015-2148-1
- Tostevin R., Shields G.A., Tarbuck G.M. et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings // Chem. Geol. 2016. V. 438. P. 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
- Wang Q., Lin Z., Chen D. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China // Sediment. Geol. 2014. V. 304. P. 59–70. https://doi.org/10.1016/j.sedgeo.2014.02.006
- Warke M.R., Strauss H., Schroder S. Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments // Precambrian Res. 2020. V. 344. P. 105767. https://doi.org/10.1016/j.precamres.2020.105767
- Xunyun H., Jianfeng S., Anjiang S. et al. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Ordovician Majiagou Formation Member 5 of the west of Jingbian Gas Field, Ordos Basin, North China // Petroleum exploration and development. 2014. V. 41(3). P. 417–427. https://doi.org/10.1016/S1876-3804(14)60048-3
- Zhao Y., Wei W., Li S. et al. Rare Earth Element geochemistry of carbonates as a proxy for deep time environmental reconstruction // Palaeogeogr. Palaeochlimatol. Palaeocol. 2021. V. 574. 110443. https://doi.org/10.1016/j/palaeo/2021.110443
Supplementary files
