Carbon and oxygen stable isotopes in the middle-upper miocene and lower pliocene carbonates of the Eastern Paratethys (Kerch-Taman Region): Palaeoenvironments and post-sedimentation changes


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.

作者简介

Yu. Rostovtseva

Faculty of Geology

编辑信件的主要联系方式.
Email: rostovtseva@list.ru
俄罗斯联邦, Moscow, 119991

V. Kuleshov

Geological Institute of the Russian Academy of Sciences

Email: rostovtseva@list.ru
俄罗斯联邦, Moscow, 119017

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2016