Influence of the Periodicity of Ground Fires in Middle-Аged Pine Forests on the Combustible Materials Stocks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Significant areas of forest are annually exposed to fires in the Krasnoyarsk Territory. Fires transform forest areas and change the stocks and structure of combustible materials. Information on the dynamics of forest fuel accumulation can serve as a basis for managing the pyrogenic resistance of forest areas. The purpose of the research is to assess the impact of early spring ground fires of different frequencies on the structure and stocks of combustible materials in forests. Experimental fires were carried out in middle-aged mixed-grass-green-moss pine forests in the forest-steppe zone of the Krasnoyarsk Territory. Experimental fires were simulated with different periodicities (annual, with an interval of 2–3 years and a singular one). Regardless of periodicity, the experimental fires led to an increase of combustible materials stocks in 2–3 years after fires. Repeated burnings reduced the stocks of combustible materials close to pre-fire values. The structure of combustible materials has changed, which has led to a decrease in potential flammability of pine forests. The proportion of needles and bark in litter has decreased, and the proportion of cones has increased. Fires led to a redistribution of deadwood classes towards larger diameters. During the research period (2014–2018), the largest reserve of forest fuel loads was noted on the plot with triennial fires (68.2 t ha–1).

Full Text

Restricted Access

About the authors

R. S. Sobachkin

Forest Institute, Siberian Branch of the RAS

Author for correspondence.
Email: romans@ksc.krasn.ru
Russian Federation, Akademgorodok, 50 bldg. 28, Krasnoyarsk, 660036

N. M. Kovaleva

Forest Institute, Siberian Branch of the RAS

Email: romans@ksc.krasn.ru
Russian Federation, Akademgorodok, 50 bldg. 28, Krasnoyarsk, 660036

References

  1. Agroklimaticheskii spravochnik po Krasnoyarskomu krayu iTuvinskoi avtonomnoi oblasti (Handbook of agroclimatic features in Krasnoyarsk krai and Tuva autonomous oblast), Leningrad: Gidrometeoizdat, 1961, 268 p.
  2. Angelstam P., Kuuluvainen T., Boreal forest disturbance regimes, successional dynamics and landscape structures: A European perspective, Ecological Bulletins, 2004, Vol. 51, pp. 117–136.
  3. Berglund H., Kuuluvainen T., Representative boreal forest habitats in northern Europe, and a revised model for ecosystem management and biodiversity conservation, Ambio, 2021, Vol. 50, pp. 1003–1017.
  4. Bird R.B., Bird W.D., Codding B.F., Parker C.H., Jones J.H., The ‘fire stick farming’ hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics, Proceedings of the National Academy of Sciences of the United States of America, 2008, Vol. 105, pp. 796–801.
  5. Bondur V.G., Gordo K.A., Kladov V.L., Prostranstvenno-vremennye raspredeleniya ploshchadei prirodnykh pozharov i emissii uglerodsoderzhashchikh gazov i aerozolei na territorii Severnoi Evrazii po dannym kosmicheskogo monitoringa (Spatiotemporal distributions of areas of natural fires and emissions of carbon-containing gases and aerosols on the territory of Northern Eurasia according to space monitoring data), Issledovanie Zemli iz kosmosa, 2016, No. 6, pp. 3–20.
  6. Brown J.K., Reinhardt E.D., Fischer W.C., Predicting duff and woody fuel consumption in Northern Idaho prescribed fires, Forest Science, 1991, Vol. 37, No. 6, pp. 1550–1566.
  7. Burrows N.D., Ward B., Robinson A.D., Behaviour and some impacts of a large wildfire in the Gnangara maritime pine (Pinus pinaster) plantation, Western Australia, CALM Science, 2000, Vol. 3, pp. 251–260.
  8. Certini G., Moya D., Lucas-Borja M., Mastrolonardo G., The impact of fire on soil-dwelling biota: A review, Forest Ecology and Management, 2021, Vol. 488, pp. 118989.
  9. Conard S.G., Ivanova G.A., Wildfire in Russian boreal forests — potential impacts of fire regime characteristics on emissions and global carbon balance estimates, Environmental Pollution, 1999, Vol. 98, pp. 305–313.
  10. Dymov A.A., Startsev V.V., Milanovsky E.Y., Valdes-Korovkin I. A., Farkhodov Y.R., Yudina A.V., Donnerhack O., Guggenberger G., Soils and soil organic matter transformations during the two years after a low-intensity surface fire (subpolar Ural, Russia), Geoderma, 2021, Vol. 404, pp. 115278.
  11. Dymov A.A., Dubrovskii Yu.A., Gabov D.N., Pirogennye izmeneniya podzolov illyuvial’no-zhelezistykh (srednyaya taiga, Respublika Komi) (Pyrogenic changes in illuvial-ferruginous podzols (Middle taiga, Komi Republic)), Pochvovedenie, 2014, No. 2, pp. 144–154.
  12. Fensham R.J., The management implications of fine fuel dynamics in bushlands surrounding Hobart, Tasmania, Journal of Environmental Management, 1992, Vol. 36, pp. 301–320.
  13. Ferreira A.J. D., Coelho C.O. A., Boulet A.K., Leighton-Boyce G., Keizer J.J., Ritsema C.J., Influence of burning intensity on water repellency and hydrological processes at forest and shrub sites in Portugal, Australian Journal of Soil Research, 2005, Vol. 43, pp. 327–336.
  14. Finney M.A., McHugh C. W., Genfell I.C., Stand- and landscape-level effects of prescribed burning on two Arizona wildfires, Canadian Journal of Forest Research, 2005, Vol. 35, pp. 1714–1722.
  15. Franklin J.F., Spies T.A., Pelt R.V., Carey A.B., Thornburgh D. A, Berg D.R., Lindenmayer D.B., Harmon M.E., Keeton W.S., Shaw D.C., Bible K., Chen J., Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example, Forest Ecology and Management, 2002, Vol. 155, pp. 399–423.
  16. French N.F. H., Kasischke E.S., Stocks B.J., Mudd J.P., Martell D.L., Lee B.S., Carbon release from fires in North American boreal forests. In: Kasischke, E. S., Stocks, B. J. (Eds.), Fire, Climate Change, and Carbon Cycling in the Boreal Forest. Springer-Verlag, New York, 2000, pp. 377–388.
  17. Furyaev V.V., Shelkopryadniki tajgi i ix vy`zhiganie (Silkworms of the taiga and their burning), Moscow: Nauka, 1966, 92 p.
  18. Furyaev V.V., Samsonenko S.D., Furyaev I.V., Pirologicheskaya kharakteristika kompleksov napochvennykh goryuchikh materialov v dominiruyushchikh tipakh lesa Verkhne-Obskogo massiva (yugo-vostok Zapadnoi Sibiri (Pyrological characteristics of complexes of ground combustible materials in the dominant forest types of the Upper Ob massif (southeast of Western Siberia)), Lesnoe khozyaistvo, 2015, No. 1, pp. 36–37.
  19. Goldammer J.G., Furyaev, V. V., Fire in ecosystems of boreal Eurasia, Dordrecht: Springer, Netherlands, 1996, 528 p.
  20. Ivanova G.A., Ivanov V.A., Zonal’nost’ lesnykh goryuchikh materialov i ikh pirogennaya transformatsiya v sosnyakakh Srednei Sibiri (Zoning of forest combustible materials and their pyrogenic transformation in pine forests of Central Siberia), Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal, 2020, No. 4, (376). pp. 9–26.
  21. Ivanova G.A., Konard S.G., Makrae D.D., Bezkorovainaya I.N., Bogorodskaya A.V., Zhila S.V., Ivanov V.A., Ivanov A.V., Kovaleva N.M., Krasnoshchekova E.N., Kukavskaya E.A., Oreshkov D.N., Perevoznikova V.D., Samsonov Yu.N., Sorokin N.D., Tarasov P.A., Tsvetkov P.A., Shishikin A.S., Vozdeistvie pozharov na komponenty ekosistemy srednetaezhnykh sosnyakov Sibiri (The effect of fires on ecosystem components in pine forests of the middle taiga in Siberia), Novosibirsk: Nauka, 2014, 232 p.
  22. Ivanova G.A., Kukavskaya E.A., Bezkorovainaya I.N., Bogorodskaya A.V., Zhila S.V., Ivanov V.A., Kovaleva N.M., Krasnoshchekova E.N., Tarasov P.A. Vozdeistvie pozharov na svetlokhvoinye lesa Nizhnego Priangar’ya (Impact of fires on light coniferous forests of the Lower Angara region), Novosibirsk: Nauka, 2022, 204 p.
  23. Ivanova G.A., Kukavskaya E.A., Ivanov V.A., Conard S.G., McRae D.J., Fuel characteristics, loads and consumption in Scots pine forests of central Siberia, Journal of Forestry Research, 2020, Vol. 31, No. 6, pp. 2507–2524.
  24. Kasischke E.S., Bruhwiler L.M., Emissions of carbon dioxide, carbon monoxide and methane from boreal forest fires in 1998, Journal of Geophysical Research, 2003, Vol. 108, pp. 2–16.
  25. Kauffman J.B., Martin R.E., Fire behavior, fuel consumption, and forest-floor changes following prescribed understory fires in Sierra Nevada mixed conifer forests, Canadian Journal of Forest Research, 1989, Vol. 19, pp. 455–462.
  26. Knapp E.E., Keeley J.E., Ballenger E.A., Brennan T.J., Fuel reduction and coarse woody debris dynamics with early and late season prescribed fi re in a Sierra Nevada mixed conifer forest, Forest Ecology and Management, 2005, Vol. 208, pp. 383–397.
  27. Knapp E.E., Varner J.M., Busse M.D., Skinner C.N., Shestak C.A., Behaviour and effects of prescribed fire in masticated fuelbeds, International Journal of Wildland Fire, 2011, Vol. 20, No 8, pp. 932–945.
  28. Kukavskay E.A, Ivanova G.A., Conard S.G, McRae D.J., Ivanov V.A., Biomass dynamics of central Siberian Scots pine forests following surface fires of varying severity, International Journal of Wildland Fire, 2014, No. 23(6), pp. 872–886.
  29. Kurbatskii N.P., Issledovanie kolichestva i svoistv goryuchikh materialov (Studying amounts and properties of forest fuel), In: Voprosy lesnoi pirologii (Challenges of the forest pyrology), Krasnoyarsk: Izd-vo ILiD SO AN SSSR, 1970, pp. 5–58.
  30. Lupyan E.A., Bartalev S.A., Balashov I.B., Egorov B.A., Ershov D.B., Kobets D.A., Sen’ko K.S., Stytsenko F.B., Sychugov I.G., Sputnikovyi monitoring lesnykh pozharov v 21 veke na territorii rossiiskoi federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) (Satellite monitoring of forest fires in the 21st century on the territory of the Russian Federation (figures and facts based on active burning detection data)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175.
  31. Malmström A., Persson T., Ahlström K., Gongalsky K.B., Bengtsson J., Dynamics of soil meso- and macrofauna during a 5-year period after clear-cut burning in a boreal forest, Applied Soil Ecology, 2009, Vol. 43, pp. 61–74.
  32. Marozas V., Racinskas J., Bartkevicius E., Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests, Forest Ecology and Management, 2007, Vol. 250, pp. 47–55.
  33. Matveev P.M., Vliyanie lesovozobnovitel’nykh vyzhiganii na sredoformiruyushchie funktsii severotaezhnykh listvennichnikov Vostochnoi Sibiri (The influence of reforestation burning on the environment-forming functions of northern taiga larch trees in Eastern Siberia), In: Informatsionnyi listok (Fact sheet), Moscow: VNITslesresurs, 1995, pp. 60–61.
  34. McRae D.J., Conard S.G., Ivanova G.A., Sukhinin A.I., Baker S.P., Samsonov Y.N., Blake T.W., Ivanov V.A., Ivanov A.V., Churkina T.V., Hao W.M., Koutzenogij K.P., Kovaleva N.M., Variability of fire behavior, fire effects, and emissions in Scotch pine forests of Central Siberia, Mitigation and Adaptation Strategies for Global Change, 2006, Vol. 11, Iss. 1, pp. 45–74.
  35. McRae D.J., Alexander M.E., Stocks B.J., Measurement of fuels and fire behavior on prescribed burns, Canadian forestry service department of the environment report, 1979, No. 0-X-287, 44 p.
  36. Miller C., Urban D.L. Modeling the effects of fi re management alternatives on Sierra Nevada mixed-conifer forests, Ecological Applications, 2000, Vol. 10, pp. 85–94.
  37. Moretti M., Duelli P., Obrist M.K., Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests, Oecologia, 2006, Vol. 149, pp. 312–327.
  38. Neary D.G., Klopatek C.C., DeBano L. F., Ffolliott P.F., Fire effects on belowground sustainability: a review and synthesis, Forest Ecology and Management, 1999, Vol. 122, pp. 51–71.
  39. Parro K., Köster K., Jõgiste K., Vodde F., Vegetation dynamics in a fire damaged forest area: the response of major ground vegetation species, Baltic Forestry, 2009, Vol. 15, pp. 206–215.
  40. Pausas J.G., Keeley J.E., A burning story: the role of fire in the history of life, Bioscience, 2009, No. 59, pp. 593–601.
  41. Payette S., Fire as a controlling process in the North American boreal forest / A Systems Analysis of the Global Boreal Forest, Cambridge University Press, 1992, P. 144–169.
  42. Pietikäinen J., Fritze H., Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification, Soil Biology and Biochemistry, 1995, Vol. 27, Iss. 1, pp. 101–109.
  43. Ponomarev E.I., Shvetsov E.G., Usataya Yu.O., Registratsiya energeticheskikh kharakteristik pozharov v lesakh Sibiri distantsionnymi sredstvami (Registration of energy characteristics of fires in Siberian forests by remote means), Issledovanie Zemli iz kosmosa, 2017, No. 4, pp. 3–11.
  44. Prescribed burning in Russia and neighbouring temperate-boreal Eurasia, A publication of the Global Fire Monitoring Center (GFMC), Dordrecht: Kessel Publ. House, 2013, 326 p.
  45. Pressler Y., Moore J.C., Cotrufo M.F., Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna, Oikos, 2019, Vol. 128, No. 3, pp. 309–327.
  46. Rothermel R.C., A mathematical model for fire spread predictions in wildland fires, Research Paper INT-115, Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1972, pp. 40.
  47. Ryan K.C., Knapp E.E., Varner J.M., Prescribed fire in North American forests and woodlands: history, current practice, and challenges, Frontiers in Ecology and the Environment, 2013, Vol. 11, pp. 15–24.
  48. Silva F. D, Portella A.C. F., Giongo M., Meta-analysis of studies on the effect of fire on forest biomes in relation to fungal microorganisms, Advances in Forestry Science, 2020, Vol. 7, No. 1, pp. 931–938.
  49. Spravochnik po klimatu SSSR (USSR climate data), Leningrad: Gidrometeoizdat, 1967, Vol. 21, Part 2, 504 p.
  50. Stocks B.J., Mason J.A., Todd J.B., Bosch E.M., Wotton B.M., Amiro B.D., Flannigan, M. D., Hirsch K.G., Logan K.A., Martell D.L., Skinner W.R., Large forest fires in Canada, 1959–1997, Journal of Geophysical Research, 2003, Vol. 108, pp. 1–12.
  51. Sukhinin A.I., French N.H. F., Kasischke E.S., Hewson J.H., Soja A.J., Csiszar I.A., Hyer E.J., Loboda T., Conrad S.G., Romasko V.I., Pavlichenko E.A., Miskiv S.I., Slinkina O.A., AVHRR-based mapping of fires in Russia: new products for fire management and carbon cycle studies, Remote Sensing of Environment, 2004, Vol. 93, pp. 546–564.
  52. Tsvetkov P.A., Zapasy goryuchikh materialov v lesakh severo-vostoka Evenkii (Pool of fuels in forests of northeastern Evenkia), Lesnoe khozyaistvo, 2001, No. 4, pp. 33–35.
  53. Valendik E.N., Verkhovets S.V., Kisilyakhov E.K., Ivanova G.A., Bryukhanov A.V., Kosov I.V., Goldammer I., Tekhnologii kontroliruemykh vyzhiganii v lesakh Sibiri (Technologies of controlled burning in the forests of Siberia), Krasnoyarsk: Sibirskii fed. universitet, 2011, 160 p.
  54. Van Wagner C.E., The line intersect method in forest fuel sampling, Forest Science, 1968, Vol. 14, No. 1, pp. 20–26.
  55. Van Wagtendonk J.W., Use of a deterministic fire growth model to test fuel treatments, Sierra Nevada Ecosystem Project: Final report to Congress, Assessments and scientific basis for management options, Davis: University of California, Centers for Water and Wildland Resources, 1996, Vol. II, Chapter. 43, pp. 1155–1165.
  56. Zhang Y.-H., Wooster M.J., Tutubalina O., Perry G.L. W., Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT, Remote Sensing of Environment, 2003, Vol. 87, pp. 1–15.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1.

Download (77KB)
3. Fig. 2.

Download (92KB)
4. Fig. 3.

Download (96KB)
5. Fig. 4.

Download (118KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies