Predictions of Carbon Stock in the Southern Moscow Region Forests Under Different Forest Use Scenarios

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of forest simulation modelling of the dynamics of carbon pools and fluxes in forest ecosystems under different forest management scenarios were considered on the example of the Dankovsky forest enterprise (south of the Moscow region, subzone of coniferous-broadleaved mixed forests). The impact of such changes in forest management practices, as the reserve regime, the reduction in the proportion of forest lands as a result of residential development, and zoning of the territory with an emphasis on increasing the recreational use of forests on the carbon balance was analysed. In computational experiments, a set of Russian models was used: the dynamic model of a forest stand FORRUS-S, the model of soil organic matter dynamics Romul_Hum, the model of the hydrothermal regime of soils SCLISS. Calculations were performed for a time period of 100 years at the forestry unit level, and were also aggregated at the level of the entire forestry district. The diversity of types of forest growth conditions (FGC), together with the species diversity and the initial different ages of stands, determined significant variations of the calculated indicators of forest stands’ production, the quantity and quality of plant litter entering the soil. For all cases, model estimates of changes in carbon reserves occurred in the forest stands within the initial 40–60 years with a subsequent decrease in the calculated values. Under the conservation scenario, an increase in the organic substances reserves in forest litter and soil was observed: for FGCs C2 and C3, an increase over 100 years was approximately 5–10 kg m–2, for the remaining FGCs — at the level of 2–3 kg m–2 in terms of carbon. Under the economic use scenarios, a relative “levelling” of forest enterprise area towards the lower end of the spectrum was shown in terms of soil carbon reserves. The maximum ecosystem carbon stock was calculated for FGC C2 and C3, the minimum — for A5 and C4. Depending on the scenario, over 100 years, the total net sequestration of carbon by the forests of the Dankovsky forest enterprise (with a total area of forested land of 6836 ha) was estimated within the range of 0.15–0.57 Tg.

Full Text

Restricted Access

About the authors

V. N. Shanin

Institute of Physicochemical and Biological Problems of Soil Science of the RAS; Center for Forest Ecology and Productivity of the RAS

Author for correspondence.
Email: shaninvn@gmail.com
Russian Federation, Institutskaya st. 2, Pushchino, Moscow Oblast, 142290; Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997

I. V. Priputina

Institute of Physicochemical and Biological Problems of Soil Science of the RAS

Email: shaninvn@gmail.com
Russian Federation, Institutskaya st. 2, Pushchino, Moscow Oblast, 142290

P. V. Frolov

Institute of Physicochemical and Biological Problems of Soil Science of the RAS

Email: shaninvn@gmail.com
Russian Federation, Institutskaya st. 2, Pushchino, Moscow Oblast, 142290

D. N. Tebenkova

Center for Forest Ecology and Productivity of the RAS

Email: shaninvn@gmail.com
Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997

S. S. Bykhovets

Institute of Physicochemical and Biological Problems of Soil Science of the RAS

Email: shaninvn@gmail.com
Russian Federation, Institutskaya st. 2, Pushchino, Moscow Oblast, 142290

S. I. Chumachenko

Center for Forest Ecology and Productivity of the RAS; Mytishchi branch of the Moscow State University of Technologicy

Email: shaninvn@gmail.com
Russian Federation, Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997; 1st Institutskaya st, 1, Mytishchi, Moscow region, 141005

References

  1. Bykhovets S.S., Komarov A.S., A simple statistical model of soil climate with a monthly step, Eurasian Soil Science, 2002, Vol. 35, No. 4, pp. 392–400.
  2. Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnik P., Priputina I., Zubkova E., Shashkov M., Romul_Hum — a model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity, Ecological Modelling, 2017a, Vol. 345, pp. 125–139. https://doi.org/10.1016/j.ecolmodel.2016.10.024.
  3. Chertov O., Shaw C., Shashkov M., Komarov A., Bykhovets S., Shanin V., Grabarnik P., Frolov P., Kalinina O., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity, Ecological Modelling, 2017b, Vol. 345, pp. 140–149. https://doi.org/10.1016/j.ecolmodel.2016.06.013.
  4. Chertov O.G., Komarov A.S., Nadporozhskaya M.A., Bykhovets S.S., Zudin S.L., ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling, Ecological Modelling, 2001, Vol. 138, No. 1–3, pp. 289–308. https://doi.org/10.1016/S0304-3800(00)00409-9.
  5. Chumachenko S.I., Korotkov V.N., Palenova M.M., Politov D.V., Simulation modeling of long-term stand dynamics at different scenarios of forest management for coniferous-broad-leaved forests, Ecological Modelling, 2003, Vol. 170, No. 2–3, pp. 345–362. https://doi.org/10.1016/S0304-3800(03)00238-2
  6. Cook-Patton S.C., Leavitt S.M., Gibbs D., Harris N.L., Lister K., Anderson-Teixeira K.J., Briggs R.D., Chazdon R.L., Crowther T.W., Ellis P.W., Griscom H.P., Herrmann V., Holl K.D., Houghton R.A., Larrosa C., Lomax G., Lucas R., Madsen P., Malhi Y., Paquette A., Parker J.D., Paul K., Routh D., Roxburgh S., Saatchi S., van den Hoogen J., Walker W.S., Wheeler C.E., Wood S.A., Xu L., Griscom B.W., Mapping carbon accumulation potential from global natural forest regrowth, Nature, 2020, Vol. 585, pp. 545–550. https://doi.org/10.1038/s41586-020-2686-x.
  7. Dmitrakov L.M., Pochvennyi pokrov biosfernykh piketov Pushchinskogo biosfernogo statsionara (Soil cover of biosphere pickets of the Pushchino biosphere station), In: Ekosistemy Yuzhnogo Podmoskov’ya (Ecosystems of the Southern Moscow Region), Moscow: Nauka, 1979, pp. 70–77.
  8. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii, (Unified State register of soil resources of Russia), Moscow: Pochvennyi in-t im. V.V. Dokuchaeva, 2014, 768 p.
  9. Erkan N., Güner Ş.T., Aydın A.C., Thinning effects on stand growth, carbon stocks, and soil properties in Brutia pine plantations, Carbon Balance and Management, 2023, Vol. 18, pp. 1–10. https://doi.org/10.1186/s13021-023-00226-0.
  10. Grabarnik P.Y., Chertov O.G., Chumachenko S.I., Shanin V.N., Khanina L.G., Bobrovskii M.V., Bykhovets S.S., Frolov P.V., Integratsiya imitatsionnykh modelei dlya kompleksnoi otsenki ekosistemnykh uslug lesov: metodicheskie podkhody (The Integration of Simulation Models for Complex Evaluation of Different Forest Ecosystem Services: Methodological Approaches), Matematicheskaya biologiya i bioinformatika, 2019, Vol. 14, No. 2, pp. 488–499. https://doi.org/10.17537/2019.14.488
  11. Gromov S.A., Zhigacheva E.S., Pokrovskii D.D., Otsenka sukhikh vypadenii soedinenii sery i azota iz atmosfery v Prioksko-Terrasnom biosfernom zapovednike po dannym nablyudenii stantsii EMEP (Evaluation of atmospheric dry deposition of sulphur and nitrogen compounds in the Prioksko-Terrasny Nature Biosphere Reserve with the measurements at the EMEP station), Ekologicheskie sistemy i pribory, 2018, No. 2, pp. 10–17. http://meteo.ru/data/156-temperature, (May 29, 2023). http://meteo.ru/data/158-total-precipitation, (May 29, 2023). http://meteo.ru/data/164-soil-temperature, (May 29, 2023).
  12. Ivanov A.L., Savin I.Y., Stolbovoi V.S., Dukhanin Y.A., Kozlov D.N., Bamatov I.M., Global’nyi klimat i pochvennyi pokrov — posledstviya dlya zemlepol’zovaniya Rossii (Global climate and soil cover — implications for land use in Russia), Byulleten’ Pochvennogo instituta imeni V.V. Dokuchaeva, 2021, Issue 107, pp. 5–32. https://doi.org/10.19047/0136-1694-2021-107-5-32
  13. Johnson D.W., Curtis P.S., Effects of forest management on soil C and N storage: meta analysis, Forest Ecology and Management, 2001, Vol. 140, No. 2–3, pp. 227–238. https://doi.org/10.1016/S0378-1127(00)00282-6
  14. Klassifikatsiya i diagnostika pochv Rossii (Classification and recognition of soils in Russia), Smolensk: Oikumena, 2004, 342 p.
  15. Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017, Vol. 345, pp. 113–124. https://doi.org/10.1016/j.ecolmodel.2016.08.007
  16. Kuznetsova A.I., Lukina N.V., Tikhonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geraskina A.P., Shevchenko N.E., Tebenkova D.N., Chumachenko S.I., Carbon stock in sandy and loamy soils of coniferous-broadleaved forests at different succession stages, Eurasian Soil Science, 2019, Vol. 52, No. 7, pp. 756–768.
  17. Laine-Kaulio H., Koivusalo H., Komarov A.S., Lappalainen M., Launianen S., Laurén A., Extending the ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing boreal mor, Ecological Modelling, 2014, Vol. 272, pp. 277–292. https://doi.org/10.1016/j.ecolmodel.2013.09.026.
  18. Leppä K., Hökkä H., Laiho R., Launiainen S., Lehtonen A., Mäkipää R., Peltoniemi M., Saarinen M., Sarkkola S., Nieminen M., Selection cuttings as a tool to control water table level in boreal drained peatland forests, Frontiers in Earth Science, 2020, Vol. 8, Article 576510. https://doi.org/10.3389/feart.2020.576510
  19. Leverett R.T., Masino S.A., Moomaw W.R., Older Eastern White pine trees and stands accumulate carbon for many decades and maximize cumulative carbon, Frontiers in Forests and Global Change, 2021, Vol. 4, Article 620450. https://doi.org/10.3389/ffgc.2021.620450
  20. Lindenmayer D.B., Laurance W.F., The unique challenges of conserving large old trees, Trends in Ecology and Evolution, 2016, Vol. 31, No. 6, pp. 416–418. https://doi.org/10.1016/j.tree.2016.03.003
  21. Lindeskog M., Smith B., Lagergren F., Sycheva E., Ficko A., Pretzsch H., Rammig A., Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe, Geoscientific Model Development, 2021, Vol. 14, No. 10, pp. 6071–6112. https://doi.org/10.5194/gmd-14-6071-2021
  22. Lipka O.N., Korzukhin M.D., Zamolodchikov D.G., Dobrolyubov N.Y., Krylenko S.V., Bogdanovich A.Y., Semenov S.M., Rol’ lesov v adaptatsii prirodnykh sistem k izmeneniyam klimata (A role of forests in natural systems’ adaptation to climate change), Lesovedenie, 2021, No. 5, pp. 531–546.
  23. Lukina N.V., Geras’kina A.P., Kuznetsova A.I., Smirnov V.E., Gornov A.V., Shevchenko N.E., Tikhonova E.V., Teben’kova D.N., Basova E.V., Funktsional’naya klassifikatsiya lesov: aktual’nost’ i podkhody k razrabotke (Forests’ functional classification: relevance and approaches to development), Lesovedenie, 2021, No. 6, pp. 566–580. https://doi.org/10.31857/S0024114821060085
  24. Mäkipää R., Abramoff R., Adamczyk B., Baldy V., Biryol C., Bosela M., Casals P., Curiel Yuste J., Dondini M., Filipek S., Garcia-Pausas J., Gros R., Gömöryová E., Hashimoto S., Hassegawa M., Immonen P., Laiho R., Li H., Li Q., Luyssaert S., Menival C., Mori T., Naudts K., Santonja M., Smolander A., Toriyama J., Tupek B., Ubeda X., Verkerk P.J., Lehtonen A., How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests? — A review, Forest Ecology and Management, 2023, Vol. 529, Article 120637. https://doi.org/10.1016/j.foreco.2022.120637
  25. Merzlenko M.D., Mel’nik P.G., Mel’nik L.P., Deponirovanie ugleroda stvolovoi fraktsiei v 100-letnikh lesnykh kul’turakh khvoinykh porod (Carbon deposit by stem fraction in 100-year-old coniferous species), Lesnoi vestnik, 2023, Vol. 27, No. 2, pp. 5–10.
  26. Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modeling of organic matter dynamics in forest ecosystems), Moscow: Nauka, 2007, 380 p.
  27. Nadporozhskaya M.A., Zubkova E.V., Frolov P.V., Bykhovets S.S., Chertov O.G., Sopodchinennost’ pochvennykh uslovii i rastitel’nykh soobshchestv v sosnyakakh kak sledstvie deistviya kompleksa faktorov (Factors of soil and ground vegetation formation in pine forests), Vestnik TvGU. Ser. Biologiya i ekologiya, 2018, No. 2, pp. 122–138.
  28. Osnovy ustoichivogo lesoupravleniya (Basics of Sustainable Forest Management), Moscow: WWF Rossii, 2014, 266 p.
  29. Peltoniemi M., Mäkipää R., Thürig E., Palosuo T., Schrumpf M., Buttrbach-Bahl K., Chertov O., Komarov A., Mikhailov A., Gärdenäs A., Perry C., Liski J., Smith P., Models in country scale carbon accounting of forest soils, Silva Fennica, 2007, Vol. 41, No. 3, pp. 575–602. https://doi.org/10.14214/sf.290
  30. Rastitel’nost’ evropeiskoi chasti SSSR (The vegetation of the European part of the USSR), Leningrad: Nauka, 1980, 429 p.
  31. Rysin L.P., Striganova B.R., Sirin A.A., Serebryanoborskoe opytnoe lesnichestvo: 65 let lesnogo monitoringa (Serebryanyi Bor trial forestry: 65 years of monitoring), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2010, 260 p.
  32. Shanin V.N., Grabarnik P.Y., Bykhovets S.S., Chertov O.G., Priputina I.V., Shashkov M.P., Ivanova N.V., Stamenov M.N., Frolov P.V., Zubkova E.V., Ruchinskaya E.V., Parametrizatsiya modeli produktsionnogo protsessa dlya dominiruyushchikh vidov derev’ev evropeiskoi chasti RF v zadachakh modelirovaniya dinamiki lesnykh ekosistem (Parameterization of Productivity Model for the Most Common Trees Species in European Part of Russia for Simulation of Forest Ecosystem Dynamics), Matematicheskaya biologiya i bioinformatika, 2019, Vol. 14, No. 1, pp. 54–76. https://doi.org/10.17537/2019.14.54
  33. Shevchenko N.E., Kuznetsova A.I., Teben’kova D.N., Smirnov V.E., Geras’kina A.P., Gornov A.V., Grabenko E.A., Tikhonova E.V., Lukina N.V., Suktsessionnaya dinamika rastitel’nosti i zapasy pochvennogo ugleroda v khvoino-shirokolistvennykh lesakh Severo-Zapadnogo Kavkaza (Succession dynamics of vegetation and storages of soil carbon in mixed forests of Northwestern Caucasus), Lesovedenie, 2019, No. 3, pp. 163–176.
  34. Shvidenko A.Z., Schepaschenko D.G., Uglerodnyi byudzhet lesov Rossii (Carbon budget of Russian forests), Sibirskii lesnoi zhurnal, 2014, No. 1, pp. 69–92.
  35. Spravochnik po klimatu SSSR (USSR climate data), Leningrad: Gidrometeoizdat, 1967, Vol. 8, Part 4, 359 p.
  36. Stolbovoi V.S., Vliyanie potepleniya klimata na balans ugleroda v lesnykh pochvakh Rossii (Climate warming impact on the carbon balance in forest soils in Russia), Byulleten’ Pochvennogo instituta imeni V.V. Dokuchaeva, 2022, Vol. 111, pp. 5–29.
  37. Strîmbu V.F., Næsset E., Ørka H.O., Liski J., Petersson H., Gobakken T., Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data, Carbon Balance and Management, 2023, Vol. 18, Article 10. https://doi.org/10.1186/s13021-023-00222-4
  38. Sukhoveeva O., Karelin D., Lebedeva T., Pochikalov A., Ryzhkov O., Suvorov G., Zolotukhin A., Greenhouse gases fluxes and carbon cycle in agroecosystems under humid continental climate conditions, Agriculture, Ecosystems and Environment, 2023, Vol. 352, Article 108502. https://doi.org/10.1016/j.agee.2023.108502
  39. Svistov P.F., Pershina N.A., Polishchuk A.I., Pavlova M.T., Semenets E.S., Ezhegodnye dannye po khimicheskomu sostavu i kislotnosti atmosfernykh osadkov za 2011–2015 gg. (Obzor dannykh) (Annual data on the chemicalcomposition and acidity of atmospheric precipitation for 2011–2015 (Data Review)), Saint Petersburg: Glavnaya geofizicheskaya observatoriya im. A.I. Voeikova, 2016, 116 p.
  40. Teben’kova D.N., Lukina N.V., Kataev A.D., Chumachenko S.I., Kiseleva V.V., Kolycheva A.A., Shanin V.N., Gagarin Y.N., Kuznetsova A.I., Razrabotka stsenariev dlya imitatsionnogo modelirovaniya ekosistemnykh uslug lesov (Scenario development for the forests ecosystem services imitation modelling), Voprosy lesnoi nauki, 2022, Vol. 5, No. 2, pp. 1–87. https://doi.org/10.31509/2658-607x-202252-104
  41. Volodin E.M., available at: http://www.igce.ru/wp-content/uploads/2021/05/Volodin_IGKE_210526-1.pdf (June 14, 2023).
  42. Zamolodchikov D.G., Grabovskii V.I., Chestnykh O.V., Dinamika balansa ugleroda v lesakh federal’nykh okrugov Rossiiskoi Federatsii (Dynamic pattern of carbon balance in the forests of federal districts of the Russian Federation), Voprosy lesnoi nauki, 2018, Vol. 1, No. 1, pp. 1–24. https://doi.org/10.31509/2658-607X-2018-1-1-1-24
  43. Zamolodchikov D.G., Grabovskii V.I., Kaganov V.V., Ekosistemnye uslugi i prostranstvennoe raspredelenie zashchitnykh lesov Rossiiskoi Federatsii (The ecosystem services and spatial distribution of protective forests in Russian Federation), Lesovedenie, 2021, No. 6, pp. 581–592.
  44. Zubkova E.V., Stamenov M.N., Priputina I.V., Grabovskii V.I., Fitoindikatsiya bogatstva pochv v lesakh i soderzhanie azota v pochve i rasteniyakh v sosnyakakh i lipnyakakh Moskovskoi oblasti (Phytoindication of soil richness in forests and nitrogen content in soil and plants in pine and linden forests of the Moscow region), Botanicheskii zhurnal, 2024. (In print).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1.

Download (841KB)
3. Fig. 2.

Download (1MB)
4. Fig.3.

Download (752KB)
5. Fig. 4.

Download (727KB)
6. Fig. 5.

Download (303KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies