Comparative assessment of Tree species as ecosystem indicator of heavy metals accumulation in calcic chernozems on the SFU’s botanical garden

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents data on the accumulation of heavy metals in calcic chernozems, as well as in the leaves and needles of certain woody plant species: white poplar (Populus alba L.) and boxelder maple (Acer negundo L.), Crimean pine (Pinus nigra var. pallasiana D. Don) and Norway spruce (Picea abies (L.) H. Karst.), growing on the territory of the deciduous and coniferous trees nursery of the Southern Federal University’s Botanical Garden. The calculated values of concentration coefficients (Kc) for soils under deciduous and coniferous trees indicate a low level of soil contamination. Both deciduous and coniferous species exhibit a barrier mechanism for the entry of heavy metals, characterized by selectivity with respect to chemical elements, which is shown through the coefficients of biological absorption of heavy metals. According to the accumulation intensity, heavy metals in deciduous species can be arranged in the following series: Zn > Pb > Cu, while in coniferous species the sequence was found to be Zn ≈ Cu > Pb. In the accumulation of metals by deciduous trees, the participation of the leaf surface is more significant, hence the inversion of lead and copper in the series of metals accumulation by deciduous trees, caused by the of lead particles being airborne and partially collected by the leaves’ surface.

Full Text

Restricted Access

About the authors

V. А. Korban’

Academy of Biology and Biotechnology

Author for correspondence.
Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

N. V. Sal’nik

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

S. N. Gorbov

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

S. S. Tagiverdiev

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

P. N. Skripnikov

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

O. S. Bezuglova

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

Ye. O. Gudzenko

Academy of Biology and Biotechnology

Email: vickaivolgina@yandex.ru
Russian Federation, Stachki ave. 194/1, Rostov-on-Don, 344090

References

  1. Anilova L.V., Primak O.V., Vasil’eva T.N., Akkumulyatsiya tyazhelykh metallov rasteniyami — tipichnymi predstavitelyami flory g. Orenburga (Accumulation of heavy metals by typical plants representing the flora of Orenburg), Izvestiya OGAU, 2013, No. 2 (40), pp. 223–225.
  2. Arinushkina E.V., Rukovodstvo po khimicheskomu analizu pochv (Handbook on chemical analysis of soils), Moscow: Izd-vo MGU, 1970, 487 p.
  3. Borodina N.A., Vliyanie tekhnogennoi nagruzki na soderzhanie tyazhelykh metallov v khvoe sosny obyknovennoi (Pinus silvestris L.) (The influence of anthropogenic load on the content of heavy metals in the needles of Scots pine (Pinus silvestris L.)), 4-i Vserossiiskaya nauchnaya konferentsiya (4th All-Russia Science Conference), Blagoveshchensk, Proc. Conf., Blagoveshchensk: Institut geologii i prirodopol’zovaniya DVO RAN, 2016, pp. 5–8.
  4. Boyter M.J., Brummer J.E., Leininger W.C., Growth and metal accumulation of geyer and mountain willow grown in topsoil versus amended mine tailings, Water, Air, Soil Pollut., 2009, Vol. 198, pp. 17–29.
  5. Cao Y.N., Ma C. X., Zhang J.F., Wang S.F., White J.C., Chen G.C., Xing B.S., Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study, Environmental Pollution, 2019, Vol. 246, pp. 980–989.
  6. Chibrik T.S., Kartasheva G.G., Salamatova N.A., Otsenka opyta biologicheskoi rekul’tivatsii verkhnikh ustupov Korkinskogo ugol’nogo razreza (Evaluation of the experience of biological reclamation of the upper ledges of the Korkinsky coal mine), Rasteniya i promyshlennaya sreda, 1982, No. 9, pp. 18–32.
  7. Egorov V.V., Ivanova E.N., Rozov N.N., Fridland V.M. Klassifikatsiya i diagnostika pochv SSSR (Classification and diagnostics of the soils of USSR), Moscow: Kolos, 1977, 224 p.
  8. Girs G.I., Soderzhanie azota i zol’nykh elementov v organakh drevesnykh rastenii Rossii (Content of nitrogen and mineral constituents in the organs of woody plants in Russia), Krasnoyarsk: Institut lesa im. V.N. Sukacheva SO RAN, 1998, 76 p.
  9. Gorbov S.N., Bezuglova O.S., Specific features of organic matter in urban soils of Rostov-on-Don, Eurasian Soil Science, 2014, Vol. 47, No. 8, pp. 792–800.
  10. GOST 26423-85 Metody opredeleniya udel’noi elektricheskoi provodimosti, pH i plotnogo ostatka vodnoi vytyazhki, (Soils. Methods for determination of specific electric conductivity, рН and solid residue of water extract), Moscow: Standartinform, 2011, available at:https://docs.cntd.ru/document/1200023484.
  11. IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, International Union of Soil Sciences (IUSS), Vienna, Austria, 2022.
  12. Kabata-Pendias A., Trace elements in soil and plants, Boca Raton, 2011, 548 p.
  13. Korel’skaya T.A., Popova L.F., Tyazhelye metally v pochvenno-rastitel’nom pokrove selitebnogo landshafta goroda Arkhangel’ska (Heavy metals in the soil-vegetation cover of the selitebnii landscape of the city Arkhangelsk), Arktika i Sever, 2012, No. 7, pp. 1–17.
  14. Korotchenko I.S., Muchkina E.Y., Sravnitel’naya otsenka nakopleniya tyazhelykh metallov listvennymi i khvoinymi porodami v usloviyakh tekhnogennogo zagryazneniya (Comparative assessment of heavy metals accumulation deciduous and conifers in the conditions of technogenic pollution), Mekhanizmy ustoichivosti rastenii i mikroorganizmov k neblagopriyatnym usloviyam sredy (Mechanisms of resistance of plants and microorganisms to unfavorable environmental conditions), Irkutsk, Conf. Proc., Irkutsk: Institut geografii im. V.B. Sochavy SO RAN, 2018, pp. 1067–1069.
  15. Korotchenko I.S., Muchkina E.Y., Tyazhelye metally v pochvennom pokrove i drevesnykh rasteniyakh urbanizirovannoi territorii goroda Krasnoyarska (Heavy metals in the soil cover and woody plants of the urban areas of Krasnoyarsk), Ekologiya urbanizirovannykh territorii, 2017, No. 2, pp. 6–11.
  16. Kuznetsova I.A., Bogolitsin K.G., Boitsova T.A., Palamarchuk I.A., Arionov N.S., Brovko O.S., Sorbtsionnye svoistva i modifikatsiya torfyanykh guminovykh kislot (orption properties and modification of peat humic acids), Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta, Seriya: Estestvennye nauki, 2013, No. 1, pp. 37–42.
  17. MacFarlane G.R., Koller C.E., Blomberg, S.P., Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies, Chemosphere, 2007, Vol. 69, pp. 1454–1464.
  18. Menshchikov S.L., Kuz’mina N.A., Mokhnachev P.E., Akkumulyatsiya metallov v khvoe sosny obyknovennoi (Pinus sylvestris L.), v pochve i snegovoi vode v usloviyakh tekhnogennogo zagryazneniya (Accumulation of metals in pine (Pinus sylvéstris L.) needles, in soil and snow melt water in conditions of technogenic pollution), Lesnoi vestnik, 2020, Vol. 24, No. 3, pp. 94–102.
  19. Mera M.F., Rubio M., Pérez C.A., Galván V., Germanier A.G., SR μXRF and XRD study of the spatial distribution and mineralogical composition of Pb and Sb species in weathering crust of corroded bullets of hunting fields, Microchemical Journal, 2015, Vol. 119, pp. 114–122.
  20. Metodicheskie ukazaniya po opredeleniyu tyazhelykh metallov v kormakh i rasteniyakh i ikh podvizhnykh soedinenii v pochvakh sel’khozugodii i produktsii rastenievodstva (Guidelines for the determination of heavy metals in feed and plants and their mobile compounds in soils of farmland and crop products), Moscow: TsINAO, 1993, 62 p.
  21. Minkina T.M., Soldatov A.V., Nevidomskaya D.G., Podkovyrina Y.S., Mandzhieva S.S., Motuzova G.V., New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (xanes)) and extractive fractionation, Geochemistry International, 2016, Vol. 54, No. 2, pp. 197–204.
  22. Mleczek M., Magdziak Z., Rissmann I., Golinski P., Effect of different soil conditions on selected heavy metal accumulation by Salix viminalis tissues, Journal of Environmental Science and Health, 2009, Vol. 44, pp. 1609–1616.
  23. Mleczek M., Rutkowski P., Rissmann I., Kaczmarek Z., Golinski P., Szentner K., Stachowiak A., Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis, Biomass and Bioenergy. 2010, Vol. 34, pp. 1410–1418.
  24. Oklo D.A., Assessment of Heavy Metals of Tree Barks in Nigeria, Journal of Environment and Bioenergy, 2013, Vol. 5, pp. 80–89.
  25. Petrov V.V., Les i ego zhizn’ (Forest and its life), Mocow: Prosveshchenie, 1986, 159 p.
  26. Prakhodskii A.N., Rudevich M.N., Rudevich N.N., Kornevye sistemy derev’ev v protivoerozionnykh nasazhdeniyakh na terrasakh (Root systems of trees in anti-erosion plantings on terraces), In: Lesovedenie i lesnoe khozyaistvo: respublikanskii mezhvedomstvennyi sb. nauch. st (Forest science and forestry: republican interdepartmental collection), Minsk: Vysheishaya shkola, 1992, pp. 109–112.
  27. Pulford I.D., Watson C., Mcgregor S.D., Uptake of chromium by trees: Prospects for phytoremediation, Environ, Environmental Geochemistry and Health, 2001, pp. 307–311.
  28. Red’ko G.I., Biologiya i kul’tura topolei (Biology and plantation of poplars), leningrad: Izd-vo Leningr. un-ta, 1975, 175 p.
  29. SanPiN1.2.3685-21, available at:https://docs.cntd.ru/document/573500115/titles/8P20LR (November 15, 2022).
  30. Seroglazova L.M., Kornevye sistemy psevdotsugi tissolistnoi i seroi, listvennitsy sibirskoi i eli obyknovennoi v lesnykh kul’turakh (Root systems of Douglas fir and Rocky Mountain Douglas-fir, Siberian larch and common spruce in forest plantations), In: Lesovedenie i lesnoe khozyaistvo: respublikanskii mezhvedomstvennyi sbornik (Forest science and forestry: republican interdepartmental collection), Minsk: Vysheishaya shkola, 1978, pp. 47–50.
  31. Shcherbenko T.A., Pogloshchenie elementov sosnoi i el’yu v lesnykh ekosistemakh severnoi taigi v usloviyakh atmosfernogo zagryazneniya. Diss. kand. biol. nauk (Absorption of elements by pine and spruce in forest ecosystems of the northern taiga under conditions of atmospheric pollution. Candidate’s biol. sci. thesis), Moscow: MGU, 2008, 89 p.
  32. Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and recognition of soils in Russia), Smolensk: Oikumena, 2004, 342 p.
  33. Soderzhanie mikroelementov v pochvakh Rostovskoi oblasti (Content of microelements in soils of the Rostov region), Mikroelementy i estestvennaya radioaktivnost’ pochv (Microelements and natural radioactivity of soils), Rostov-on-Don, Proc. of 3rd interuniversity meeting, Rostov-on-Don: Izd-vo Rost. un-ta, 1961, pp. 38–41.
  34. Takenaka C., Kobayashi M., Kanaya S., Accumulation of cadmium and zinc in Evodiopanax innovans, Environmental Geochemistry and Health, 2009, Vol. 31, pp. 609–615.
  35. Tashekova A.Z., Toropov A.S., Ispol’zovanie list’ev rastenii kak biogeokhimicheskikh indikatorov sostoyaniya gorodskoi sredy (Application of leaves as biogeoindicators of urban environment state), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2017, No. 328 (5), pp. 114–124.
  36. Tsitsuashvili V.S., Minkina T.M., Sinkhrotronnoe izluchenie dlya issledovaniya transformatsii toksichnykh elementov v sisteme “pochva-rastenie” (obzor) (Synchrotron radiation for the study of toxic elements transformation in the soil–plant system (review)), Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2021, No. 8, pp. 41–50.
  37. Turlibekova D.M., Soderzhanie tyazhelykh metallov u Acer negundo v usloviyakh promyshlennogo zagryazneniya goroda Orska (The content of heavy metals at Acer negundo growing in parks of the city of Orsk, in the conditions of industrial pollution), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, No. 6 (167), pp. 148–149.
  38. Tyurin I.V., Organicheskoe veshchestvo pochv (Soil organic matter), Moscow: Sel’khozgiz, 1937, 287 p.
  39. Volkova I.Y., Mikroelementarnyi sostav podrosta i podleska elovo-pikhtovykh lesov Respubliki Marii El. Diss. kand. biol. nauk (Microelemental composition of regrowth and undergrowth of spruce-fir forests of the Republic of Mari El. Candidate’s biol. sci. thesis), Yoshkar-Ola: 2001, 112 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Map of the location of monitoring sites.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies