Siberian Larch Reproduction Using the Somatic Embryogenesis Biotechnology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The biotechnology of somatic embryogenesis in vitro, combined with genomic selection and cryopreservation is used to create varietal genetically tested fast-growing plantations (Multi-Varietal Forestry program (MVF), Park, 2014, 2016, 2018). In 2008, the Sukachev Forest Institute of the Siberian Branch of the RAS has developed for the first time the biotechnology of somatic embryogenesis for Siberian larch (Larix sibirica Ledeb.) and obtained 42 proliferating cell lines consisting of embryonal-suspensor mass (ESM). The age of cell lines reaches 13 years. Significant variability was observed between cell lines in the number and size of globular embryos in proliferating embryogenic cultures, and in the ability of somatic embryos to mature and germinate. In different cell lines, the number of globular somatic embryos per 1 g of ESMs fresh weight ranges from 2040 to 11103, with 10 to 1220 embryos maturing. The regenerants germinate in a growth chamber, and plantlets of individual cell lines grow successfully in a greenhouse and then in the soil of the forest nursery at the Forest Institute’s Pogorelsky Bor station. Genotyping of clones at microsatellite loci showed their complete genetic identity to the cell line from which they were obtained. In cloned Siberian larch trees at the age of seven, the initiation of generative organs forming occurred. Thus, at present, it is possible to quickly implement the MVF program for plantation forestry in Russia.

About the authors

I. N. Tretyakova

Forest Institute, Siberian Branch of the RAS

Author for correspondence.
Email: mtavi@bk.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50, bldg. 28

M. E. Park

Forest Institute, Siberian Branch of the RAS

Email: mtavi@bk.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50, bldg. 28

References

  1. Сиделев С.И. Математические методы в биологии и экологии: введение в элементарную биометрию. Ярославль: Ярославский гос. ун-т им. П.Г. Демидова, 2012. 140 с.
  2. Третьякова И.Н. Способ микроклонального размножения лиственницы сибирской в культуре in vitro через соматический эмбриогенез на среде АИ для плантационного лесовыращивания. Патент РФ RU 2456344 C2. М.: Федеральная служба по интеллектуальной собственности, 2012. https://new.fips.ru/registers-doc-view/fips_ servlet?DB=RUPAT&DocNumber=2456344&TypeFile= html
  3. Третьякова И.Н., Баранчиков Ю.Н., Буглова Л.В., Белоруссова А.С., Романова Л.И. Особенности формирования генеративных органов лиственницы сибирской и их морфогенетический потенциал // Успехи современной биологии. 2006. Т. 126. № 5. С. 472–480.
  4. Третьякова И.Н., Пак М.Э., Орешкова Н.В., Падутов В.Е. Регенерационная способность клеточных линий лиственницы сибирской в культуре in vitro // Известия российской академии наук. Серия биологическая. 2022. № 6. С. 585–596.
  5. Aronen T.S., Varis S., Tikkinen M.A., Välimäki S., Nikkanen T. Somatic embryogenesis of Norway spruce in Finland – seven years from start to first commercial pilots. In: Canhoto J.M., Correia S.I. (Editors) Book of Abstracts - 5th International Conference of the IUFRO Working Party 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges” September 10–15, 2018. Coimbra, Portugal. P. 56.
  6. Bonga J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers // Canadian J. Forest Research. 2015. V. 45. № 4. P. 379–383.
  7. Ding C., Park Y.S., Bonga J., Bartlett B., Li Y., Raley F. A brief review of combining genomic selection and somatic embryogenesis for tree improvement. In: Bonga J.M., Park Y.S., Trontin J.F. (Editors) Proceedings of the 5th International Conference of the IUFRO Unit 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges.” September 10–15, 2018. Coimbra, Portugal. P. 55–69.
  8. Gamborg O., Phillips G.C. Plant cell, tissue and organ culture: fundamental methods. Berlin, Heidelberg: Springer, 1995. 385 p.
  9. Goddard M.E., Hayes B.J. Genomic selection // J. Animal breeding and Genetics. 2007. V. 124. № 6. P. 323–330.
  10. Goryachkina O.V., Park M.E., Tretyakova I.N., Badaeva E.D., Muratova E.N. Cytogenetic stability of young and long-term embryogenic cultures of Larix sibirica // Cytologia. 2018. V. 83. № 3. P. 323–329.
  11. Gupta P.K., Durzan D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana) // Plant Cell Reports. 1985. V. 4. № 4. P. 177–179.
  12. Hertzberg M. From genes towards products and the significance of gene delivery // BMC Proceedings. BioMed Central. 2011. V. 5. № 7. P. 1.
  13. Hühn M. Clonal mextures juvenile-mature correlations and necessary number of clones // Silvae Genet. 1987. V. 36. P. 83–92.
  14. Klimaszewska K., Hargreaves C., Lelu-Walter M.A., Trontin J.F. Advances in conifer somatic embryogenesis since year 2000 // In vitro embryogenesis in higher plants. Humana Press, N.Y., 2016. P. 131–166.
  15. Klimaszewska K., Cyr D.R. Conifer somatic embryogenesis: I. Development // Dendrobiology. 2002. V. 48. P. 31–39.
  16. Lebedev V.G., Lebedeva T.N., Chernodubov A.I., Shestibratov K.A. Genomic selection for forest tree improvement: Methods, achievements and perspectives // Forests. 2020. V. 11. № 11. P. 1190.
  17. Lelu-Walter M.-A., Bernier-Cardou M., Klimaszewska K. Clonal plant production from self-and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell, Tissue and Organ Culture. 2008. V. 92. № 1. P. 31–45.
  18. Lelu-Walter M.-A., Pâques L.E. Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding // Annals of Forest Science. 2009. V. 66. № 104. P. 1–10.
  19. Libby W.J. What is a safe number of clones per plantation // Resistance to diseases and pests in forest trees. 1982. P. 324–360.
  20. Lindgren D. The population biology of clonal deployment. In Ahuja M. R., Libby W. J. (eds) // Clonal Forestry I: Genetics and Biotechnology. Berlin: Springer-Verlag, 1993. P. 34–49.
  21. MacKay J.J., Becwar M.R., Park Y.-S., Corderro J.P., Pullman G.S. Genetic control of somatic embryogenesis initiation in Loblolly pine and implications for breeding // Tree Genetics and Genomes. 2006. V. 2. P. 1–9.
  22. Merkle S. The ups and downs of developing hybrid sweetgum varieties for the U.S. bioenergy and pulp and paper industries: a 20-year case study. In: Bonga J.M., Park Y.S., Trontin J.F. (Editors) Proceedings of the 5th International Conference of the IUFRO Unit 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges”. September 10–15, 2018. Coimbra, Portugal. P. 225–229.
  23. Namroud M.-C., Bousquet J., Doerksen T., Beaulieu J. Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce // Evolutionary Applications. 2012. V. 5. № 6. P. 641–656.
  24. Park Y.-S. Conifer somatic embryogenesis and multi-varietal forestry // In: Fenning T. (Eds.) Challenges and Opportunities for the World’s Forests in the 21st Century. Forestry Sciences, Springer, Dordercht. 2014. V. 81. P. 425–439.
  25. Park Y.-S., Beaulieu J., Bousquet J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis // Vegetative propagation of forest trees. 2016. P. 302–322.
  26. Park Y.-S., Ding C., Lenz P., Nadeau S., Adams G., Millican S., Beaulieu J., Bousquet J. Implementing genomic selection for multi-varietal forestry of white spruce (Picea glauca) in New Brunswick, Canada. In: Bonga J.M., Park Y.S., Trontin J.F. (Editors) Proceedings of the 5th International Conference of the IUFRO Unit 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges”. September 10–15, 2018. Coimbra, Portugal. P. 230–233.
  27. Pereira V.T., Nunes S., Sousa D., Almeida T. KLON – plant biotechnology for productivity and sustainability of agroforestry industries In: Canhoto J. M., Correia S. I. (Editors) Book of Abstracts – 5th International Conference of the IUFRO Working Party 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges”. September 10–15, 2018. Coimbra, Portugal. P. 33.
  28. Peng C., Gao F., Wang H., Shen H., Yang L. Optimization of maturation process for somatic embryo production and cryopreservation of embryogenic tissue in Pinus koraiensis // Plant Cell, Tissue and Organ Culture (PCTOC). 2021. V. 144. № 1. P. 185–194.
  29. Taniguchi T., Konagaya K., Nanasato Y. Somatic embryogenesis in artificially pollinated seed families of 2nd generation plus trees and cryopreservation of embryogenic tissue in Cryptomeria japonica D. Don (Sugi) // Plant Biotechnology. 2020. V. 37. № 2. P. 239–245.
  30. Tretiakova I.N. Embryogenic cell lines and somatic embryogenesis in in vitro culture of Siberian larch // Doklady Biological Sciences. Springer Nature BV. 2013. V. 450. № 1. P. 139–141.
  31. Tretyakova I.N., Barsukova A.V. Somatic embryogenesis in in vitro culture of three larch species // Russian J. Developmental Biology. 2012. V. 43. № 6. P. 353–361.
  32. Tretyakova I.N., Kudoyarova G.R., Park M.E., Kazachenko A.S., Shuklina A.S., Akhiyarova G.R., Korobova A.V., Veselov S.U. Content and immunohistochemical localization of hormones during in vitro somatic embryogenesis in long-term proliferating Larix sibirica cultures. Plant Cell, Tissue and Organ Culture. 2019. V. 136. № 3. P. 511–522.
  33. Tretyakova I.N., Pak M.E., Shuklina A.S., Pahomova A.P., Rogozhin E.A., Sadykova V.S., Petukhova I.A. Use of plant antimicrobial peptides in in vitro embryogenic cultures of Larix sibirica // Biology Bulletin. 2020. V. 47. № 3. P. 225–236.
  34. Tretyakova I.N., Park M.E. Somatic polyembriogenesis of Larix sibirica in embryogenic in vitro culture // Russian J. Developmental Biology. 2018. V. 49. № 4. P. 222–233.
  35. Tretyakova I.N., Park M.E., Baranova A.A., Lisetskaya I.A., Shuklina A.S., Rogozhin E.A., Sadykova V.S. Use of antimicrobial peptides secreted by Trichoderma micromycetes to stimulate embryogenic cultures of Larix sibirica // Russian J. Developmental Biology. 2018. V. 49. № 6. P. 370–380.
  36. Tretyakova I.N., Park M.E., Ivanitskaya A.S., Oreshkova N.V. Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro // Russian J. Plant Physiology. 2016. V. 63. № 6. P. 800–810.
  37. Tretyakova I.N., Park M.E., Pakhomova A.P., Sheveleva I.S., Muratova E.N. Induction of somatic embryogenesis in siberian spruce (Picea obovata) in in vitro culture // Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya. 2021. № 54. P. 6–20.
  38. Tretyakova I.N., Shuklina A.S., Park M.E., Yang L., Akhiyarova G.R., Kudoyarova G.R. The Role of Phytohormones in the Induction of Somatic Embryogenesis in Pinus sibirica and Larix sibirica // Cytologia. 2021. V. 86. № 1. P. 55–60.
  39. Tretyakova I.N., Shuvaev D.N. Somatic Embryogenesis in Siberian Dwarf Pine (Pinus pumila (Pall.) Regel) // Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Springer, Cham, 2018. P. 307–317.
  40. Wu H.X. Benefits and risks of using clones in forestry – a review // Scandinavian J. Forest Research. 2019. V. 34. № 5. P. 352–359.
  41. Zobel B. Clonal forestry in eucalyptus. In Ahuja M. R., Libby W.J. (Eds.). Clonal Forestry In: Genetics and Biotechnology. Berlin: Springer-Verlag, 1993. P. 139–148.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (2MB)
4.

Download (57KB)
5.

Download (3MB)

Copyright (c) 2023 И.Н. Третьякова, М.Э. Пак

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies