Density of Tree Wood and Bark in Climatic Gradients of Eurasia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under the conditions of climate changing, the biospheric role of forest cover is increasing, as well as the relevance of research on the carbon depositing capacity of the world’s forests. These studies include an assessment of the trees’ and stands’ biological productivity, which includes not only phytomass, but also the basic density (BD) of stem wood and bark. In our study, allometric models of the BD of wood and bark of 9 forest-forming tree species of Northern Eurasia have been developed, including such independent variables as the tree age, the stem diameter, as well as the average temperature of January and average annual precipitation. The structure of a mixed-effects model is applied, in which the affiliation of the source data to each of the tree species is encoded by a set of dummy variables. Based on the space-for-time substitution principle, the obtained patterns of BD changes in spatial climatic gradients are used to predict their changes in temporal gradients. The effect of Liebig’s law of limiting factor in predicting BD in spatial and temporal climatic gradients has been confirmed. The revealed patterns of changes in the BD of wood and bark in temperature and precipitation gradients completely repeat the previously established patterns of changes in phytomass and net primary production of trees and stands of Eurasia in the same gradients. This means that the climatic conditionality of the studied indicators of biological productivity has a common nature for both quantitative and qualitative indicators of trees and stands.

About the authors

V. А. Usoltsev

Botanical Garden, Ural Branch of the RAS; Ural State Forest Engineering University

Author for correspondence.
Email: Usoltsev50@mail.ru
Russia, 620144, Yekaterinburg, 8 Marta st. 202а; Russia, 620100, Yekaterinburg, Sibirsky tract, 37

I. S. Tsepordey

Botanical Garden, Ural Branch of the RAS

Email: Usoltsev50@mail.ru
Russia, 620144, Yekaterinburg, 8 Marta st. 202а

References

  1. Андреева И.И., Родман Л.С. Ботаника. М.: КолосС, 2003. 528 с.
  2. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Статистика, 1973. 392 с.
  3. Лиепа И.Я. Динамика древесных запасов: Прогнозирование и экология. Рига: Зинатне, 1980. 170 с.
  4. Полубояринов O.И. Плотность древесины. М.: Лесн. пром-сть, 1976. 160 с.
  5. Исаева Л.Н. Метод расчета локальной и средней плотности абсолютно сухой древесины в стволах сосны и лиственницы // Лесоведение. 1978. № 4. С. 90-94.
  6. Мелехов В.И., Бабич Н.А., Корчагов С.А. Качество древесины сосны в культурах. Архангельск: Изд-во АГТУ, 2003. 110 с.
  7. Усольцев В.А., Цепордей И.С. Квалиметрия фитомассы лесных деревьев: плотность и содержание сухого вещества: монография. Екатеринбург: Уральский государственный лесотехнический университет, Ботанический сад УрО РАН, 2020. 182 с. (CD-ROM). https://elar.usfeu.ru/bitstream/123456789/10022/1/Usolcev_20.pdf
  8. Усольцев В.А., Цепордей И.С. Климатически обусловленные территориальные изменения фитомассы деревьев лесообразующих видов Евразии и их прогнозирование // Сибирский лесной журн. 2021а. № 6. С. 72–90.
  9. Усольцев В.А., Цепордей И.С. Принцип пространственно-временнóго замещения в экологии и прогнозирование биомассы Picea spp. при изменении климата // Хвойные бореальной зоны. 2021б. Т. 39. № 4. С. 269–275.
  10. Усольцев В.А., Цепордей И.С., Азаренок М.В. Климатически обусловленные пространственные и темпоральные изменения биомассы рода Abies spp. Евразии в контексте закона лимитирующего фактора // Хвойные бореальной зоны. 2021. Т. 39. № 5. С. 392–400.
  11. Фонти М.В. Климатический сигнал в параметрах годичных колец (плотности древесины, анатомической структуре и изотопном составе) хвойных и лиственных видов деревьев в различных природно-климатических зонах Евразии: дис. … докт. биол. наук: 03.02.08. Красноярск: СибФУ, 2020. 45 с.
  12. Baskerville G.L. Use of logarithmic regression in the estimation of plant biomass // Canadian J. Forest Research. 1972. V. 2. P. 49-53.
  13. Billard A., Bauer R., Mothe F., Colin F., Longuetaud F. Vertical variations in wood basic density for two softwood species // European J. Forest Research. 2021. V. 140. P. 1401–1416.
  14. Bouriaud O., Leban J.-M., Bert D., Deleuze C. Intra-annual variations in climate influence growth and wood density of Norway spruce // Tree Physiology. 2005. V. 25. P. 651–660.
  15. Castro V.R., Chambi-Legoas R., Filho M.T., Surdi P.G., Zanuncio J.C., Zanuncio A.J.V. The effect of soil nutrients and moisture during ontogeny on apparent wood density of Eucalyptus grandis // Scientific Reports. 2021. V. 11. № 1. Article 2530. https://doi.org/10.1038/s41598-020-59559-2
  16. Falster D.S., Duursma R.A., Ishihara M.I., Barneche D.R., FitzJohn R.G., Vårhammar A., Aiba M., Ando M., Anten N., Aspinwall M.J., Baltzer J.L., Baraloto C., Battaglia M., Battles J.J., Bond-Lamberty B., van Breugel M., Camac J., Claveau Y., Coll L., Dannoura M., Delagrange S., Domec J.-C., Fatemi F., Feng W., Gargaglione V., Goto Y., Hagihara A., Hall J.S., Hamilton S., Harja D., Hiura T., Holdaway R., Hutley L.S., Ichie T., Jokela E.J., Kantola A., Kelly J.W.G., Kenzo T., King D., Kloeppel B.D., Kohyama T., Komiyama A., Laclau J.-P., Lusk C.H., Maguire D.A., le Maire G., Mäkelä A., Markesteijn L., Marshall J., McCulloh K., Miyata I., Mokany K., Mori S., Myster R.W., Nagano M., Naidu S.L., Nouvellon Y., O’Grady A.P., O’Hara K.L., Ohtsuka T., Osada N., Osunkoya O.O., Peri P.L., Petritan A.M., Poorter L., Portsmuth A., Potvin C., Ransijn J., Reid D., Ribeiro S.C., Roberts S.D., Rodríguez R., Saldaña-Acosta A., Santa-Regina I., Sasa K., Selaya N.G., Sillett S.C., Sterck F., Takagi K., Tange T., Tanouchi H., Tissue D., Umehara T., Utsugi H., Vadeboncoeur M.A., Valladares F., Vanninen P., Wang J.R., Wenk E., Williams R., Ximenes F. de Aquino, Yamaba A., Yamada T., Yamakura T., Yanai R.D., York R.A. BAAD: a Biomass And Allometry Database for woody plants // Ecology. 2015. V. 96. Article 1445.
  17. Fearnside P.M. Wood density for estimating forest biomass in Brazilian Amazonia // Forest Ecology and Management. 1997. V. 90. № 1. P. 59–89.
  18. Freese F. Linear regression methods for forest research. USDA Forest Service. Res. Paper FPL 17. Madison, 1964. 136 p.
  19. Fu L.Y., Zeng W.S., Tang S.Z., Sharma R.P., Li H.K. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China // J. Forest Science. 2012. V. 58. № 3. P. 101–115.
  20. Fujimoto T., Kita K., Kuromaru M. Genetic control of intra-ring wood density variation in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) // Wood Science and Technology. 2008. V. 42. P. 227–240.
  21. Howe J.P. Relationship of climate to the specific gravity of four Costa Rican hardwoods, an exploratory study // Wood Fiber. 1974. V. 5. P. 347–352.
  22. Jacobs M.W., Cunia T. Use of dummy variables to harmonize tree biomass tables // Canadian J. Forest Research. 1980. V. 10. № 4. P. 483–490.
  23. Kattge J., Bönisch G., Díaz S., Lavorel S., Prentice I.C., Leadley P., Tautenhahn S. et al. TRY plant trait database – Enhanced coverage and open access // Global Change Biology. 2020. V. 26. P. 119–188.
  24. Kellomäki S. On geoclimatic variation in basic density of Scots pine wood // Silva Fennica. 1979. V. 13. № 1. P. 55–64.
  25. Kerfriden B., Bontemps J.-D., Leban J.-M. Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density // Plant Ecology. 2021. V. 222. № 3. P. 289–303.
  26. Lachowicz H., Bieniasz A., Wojtan R. Variability in the basic density of silver birch wood in Poland // Silva Fennica. 2019. V. 53. № 1. Article id 9968.
  27. Mikola P. On variations in tree growth and their significance to growth studies // Communicationes Instituti forestalis Fenniae. 1950. V. 38. № 5. P. 1–131.
  28. Molteberg D., Høibø O. Modelling of wood density and fibre dimensions in mature Norway spruce // Canadian J. Forest Research. 2007. V. 37. № 8. P. 1373–1389.
  29. Saikku O. The effect of fertilization on the basic density of Scots pine (Pinus silvestris L.). A densitometric study on the X ray chart curves of wood // Communicationes Instituti forestalis Fenniae. 1975. V. 85. № 3. P. 1-49.
  30. Sousa V.B., Louzada J.L., Pereira H. Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees // Forest Systems. 2016. V. 25. № 1. Article e053.
  31. St-Germain J.-L., Krause C. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec // Canadian J. Forest Research. 2008. V. 38. № 6. P. 1397–1405.
  32. Swenson N.G., Enquist B.J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community – wide variation across latitude and elevation // American J. Botany. 2007. V. 94. № 3. P. 451–459.
  33. Télles J.R.G., Martínez A.V., de la Rosa A.B., Grande J.C., Mendoza C.P. Radial variation of basic density in Pinus patula Schltdl. et Cham. in three locations from Hidalgo state // Revista Mexicana de Ciencias Forestales. 2011. V. 2. № 7. P. 71–78.
  34. Usoltsev V.A. Stem taper, density and dry matter content in biomass of trees growing in Central Eurasia: CD-monograph. Yekaterinburg: Ural State Forest Engineering University, Botanical Garden of Ural Branch of RAS, 2020. Available at: https://elar.usfeu.ru/handle/123456789/9649
  35. Usoltsev V.A., Shobairi S.O.R., Tsepordey I.S., Chasovskikh V.P. On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia // Environment and Ecology. 2020a. V. 38. P. 300–315.
  36. Usoltsev V.A., Shobairi S.O.R., Tsepordey I.S., Chasovskikh V.P. Additive model of aboveground biomass of larch single-trees related to age, DBH and height, sensitive to temperature and precipitation in Eurasia // J. Applied Sciences & Environmental Management. 2020b. V. 24. P. 1759–1766.
  37. Usoltsev V., Zukow W., Tsepordey I. Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor // Ecological Questions. 2022. V. 33. № 1. P. 15–23. https://doi.org/10.12775/EQ.2022.007
  38. Vieira J., Carvalho A., Campelo F. Tree growth under climate change: Evidence from xylogenesis timings and kinetics // Frontiers in Plant Science. 2020. V. 11. Article 90.
  39. Wiemann M.C., Williamson G.B. Geographic variation in wood specific gravity: effects of latitude, temperature and precipitation // Wood and Fiber Science. 2002. V. 34. № 1. P. 96–107.
  40. World Weather Maps, 2007. https://www.mapsofworld.com/ referrals/weather
  41. Zanne A.E., Lopez-Gonzalez G., Coomes D.A., Ilic J., Jansen S., Lewis S.L., Miller R.B., Swenson N.G., Wiemann M.C., Chave J. Global wood density database. Dryad, 2009. Identifier: http://hdl.handle.net/10255/dryad.235
  42. Zeng W.S. Developing tree biomass models for eight major tree species in China. In: Biomass volume estimation and valorization for energy. Chapter 1. Intech Publ., 2017. P. 3–21.
  43. Zhang L., Shi H. Local modeling of tree growth by geographically weighted regression // Forest Science. 2003. V. 50. № 2. P. 225–244.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (581KB)
3.

Download (344KB)
4.

Download (372KB)

Copyright (c) 2023 В.А. Усольцев, И.С. Цепордей

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies