Forest Growing Conditions Affect the CO2 Emission from the Soil Surface in the Middle Taiga Pine Forests of the Komi Republic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Obtaining the experimental data on soil respiration is relevant due to significant range of CO2 emission estimates in different ecosystems. The aim of work was to characterize CO2 emission from soil surface of pine forests growing in different conditions on North-East of European part of Russia. The studies have been carried out in immature and mature pine forests Sphagnosa, Myrtillus and Lichen types located in the Institute of biology of the Komi Science Center, RAS forest stations. Carbon dioxide emission was measured using LI COR 8100 during the May-October periods in 2008–2017. A brief weather conditions characteristic was given. Higher values of the CO2 flux from the soil surface was observed in July (1.9–2.9 g С m–2 day–1 in Sphagnosa type) and August (2.5–6.6 g С m–2 day–1 in Myrtillus and Lichen types). The year-to-year variability and influence of weather conditions on soil respiration were shown. The soil temperature had a close and positive relationship (R2 = 0.49–0.77) with CO2 emission whereas correlation with soil moisture was weak. During summertime the efflux of C-CO2 in a pine forest of Myrtillus type was 188–442 g C m–2, during the vegetation period (01.05–30.09) – 279–563 g C m–2 and the snowless period (01.05–31.10) – 308–583 g C m–2, which is 1.5–1.8 times higher than in the pine forests of Sphagnosa and Lichen types during the snowless period (р = 0.014) and growing season (р = 0.020). In summertime the losses of carbon were similar (р = 0.106). The pine forests of Sphagnosa and Lichen types were comparable in С-СО2 efflux both during the vegetation and the snowless periods (p > 0.05). These data are important in assessing the expenditure part of the carbon balance in forest ecosystems in the European North-East of Russia.

About the authors

A. F. Osipov

Institute of Biology, Komi Scientific Centre, Ural Branch of the RAS

Author for correspondence.
Email: osipov@ib.komisc.ru
Russia, 167982, Syktyvkar, Kommunisticheskaya st., 28

References

  1. Бобкова К.С. Биологическая продуктивность хвойных лесов европейского Северо-Востока. Л.: Наука, 1987. 156 с.
  2. Карелин Д.В., Почикалов А.В., Замолодчиков Д.Г., Гитарский М.Л. Факторы пространственно-временной изменчивости потоков СО2 из почв южнотаежного ельника на Валдае // Лесоведение. 2014. № 4. С. 56–66.
  3. Кузнецов М.А. Динамика содержания органического углерода в заболоченных ельниках средней тайги: автореф. дис. … канд. биол. наук: 03.02.08. Сыктывкар, 2010. 20 с.
  4. Курганова И.Н., Лопес де Гереню В.О., Мякшина Т.Н., Сапронов Д.В., Ромашкин И.В., Жмурин В.А., Кудеяров В.Н. Натурная и модельная оценки дыхания лесной дерново-подзолистой почвы в Приокско-Террасном биосферном заповеднике // Лесоведение. 2019. № 5. С. 435–448.
  5. Машика А.В. Эмиссия диоксида углерода с поверхности подзолистой почвы // Почвоведение. 2006. № 12. С. 1457–1463.
  6. Осипов А.Ф. Эмиссия диоксида углерода с поверхности почвы спелого сосняка черничного в средней тайге Республики Коми // Лесоведение. 2015. № 5. С. 355–366.
  7. Сморкалов И.А., Воробейчик Е.Л. Механизм стабильности эмиссии CO2 из лесной подстилки в условиях промышленного загрязнения // Лесоведение. 2016. № 1. С. 34–43.
  8. Bobrik A.A., Goncharova O.Yu., Matyshak G.V., Ryzhova I.M., Makarov M.I., Timofeeva M.V. Spatial distribution of the components of carbon cycle in soils of forest ecosystems of the northern, middle, and southern taiga of western Siberia // Eurasian Soil Science. 2020. V. 53. № 11. P. 1549–1560.
  9. Bond-Lamberty B., Thomson A. A global database of soil respiration data // Biogeosciences. 2010. V. 7. № 6. P. 1915-1926.
  10. Davidson E.A., Janssens I.A., Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10 // Global Change Biology. 2006. V. 12. P. 154–164.
  11. Hashimoto S., Carvalhais N., Ito A., Migliavacca M., Nishina K., Reichstein M. Global spatiotemporal distribution of soil respiration modeled using a global database // Biogeosciences. 2015. V. 12. P. 4121–4132.
  12. Ivanov D., Tatarinov F., Kurbatova J. Soil respiration in paludified forests of European Russia // J. Forest Research. 2020. V. 31. P. 1939–1948.
  13. Jian J., Bahn M., Wang C., Bailey V.L., Bond-Lamberty B. Prediction of annual soil respiration from its flux at mean annual temperature // Agricultural and Forest Meteorology. 2020. V. 287. № 107961.
  14. Jian J., Vargas R., Anderson-Teixeira K., Stell E., Herrmann V., Horn M., Kholod N., Manzon J., Marchesi R., Paredes D., Bond-Lamberty B.P. A global database of soil respiration data, Version 5.0. ORNL DAAC, 2021. Oak Ridge, Tennessee, USA.
  15. Kadulin M.S., Koptsik G.N. Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola subarctic region // Eurasian Soil Science. 2013. V. 46. № 11. P. 1107–1116.
  16. Kadulin M.S., Smirnova I.E., Koptsyk G.N. The emission of carbon dioxide from soils of the Pasvik nature reserve in the Kola subarctic // Eurasian Soil Science. 2017. V. 50. P. 1055–1068.
  17. Korkiakoski M., Tuovinen J.P., Penttila T., Sarkkola S., Ojanen P., Minkkinen K., Rainne J., Laurila T., Lohila A. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting // Biogeosciences 2019. V. 16. P. 3703–3723.
  18. Kučinskas O., Marozas V. Diurnal and seasonal soil CO2 efflux variation in Scots pine (Pinus sylvestris L.) forests in the European hemi-boreal zone, Lithuania // J. Elementology. 2021. V. 26. P. 731–754.
  19. Kurganova I.N., Lopes de Gerenyu V.O., Khoroshaev D.A., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N. Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-Terrasny biosphere reserve in the perspective of current climate trends // Eurasian Soil Science. 2020. Vol. 53. № 10. P. 1421–1436.
  20. Masyagina O.V., Evgrafova S.Y., Menyailo O.V., Mori S., Koike T., Prokushkin S.G. Age-dependent changes in soil respiration and associated parameters in Siberian permafrost Larch stands affected by wildfire // Forests. 2021. V. 12. P. 107.
  21. Masyagina O.V., Menyailo O.V., Prokushkin A.S., Matvienko A.I., Makhnykina A.V., Evgrafova S.Yu., Mori S., Koike T., Prokushkin S.G. Soil respiration in larch and pine ecosystems of the Krasnoyarsk region (Russian Federation): a latitudinal comparative study // Arabian J. Geosciences. 2020. V. 13. P. 954.
  22. Mukhortova L., Shchepashchenko D., Shvidenko, A. Soil respiration database. 2020. http://dare.iiasa.ac.at/107/
  23. Mukhortova L., Schepaschenko D., Moltchanova E., Shvidenko A., Khabarov N., See L. Respiration of Russian soils: Climatic drivers and response to climate change // Science of The Total Environment. 2021. V. 785. 147314.
  24. Osipov A.F. Effect of interannual difference in weather conditions of the growing season on the CO2 emission from the soil surface in the middle-taiga cowberry–lichen pine forest (Komi Republic) // Eurasian Soil Science. 2018. V. 51. № 12. P. 1419–1426.
  25. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing.Vienna, 2020. https://www.R-project.org/
  26. Sha L., Teramoto M., Noh N.J., Hashimoto S., Yang M., Sanwangsri M., Liang N. Soil carbon flux research in the Asian region: Review and future perspectives // J. Agricultural Meteorology. 2021. V. 77. № 1. P. 24–51.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (263KB)
3.

Download (665KB)
4.

Download (223KB)

Copyright (c) 2023 А.Ф. Осипов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies