Development Dynamics of the Almond Willow’s Shoots on Different Levels Atmospheric Moisture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides an analysis of the modern trends in the rational use of fast-growing shrub willows. The almond willow (Salix triandra) is considered a source of wicker for weaving, as well as a species performing important ecosystem functions. The purpose of the research was to identify the influence of uneven precipitation distribution on the growth and development of the S. triandra shoots. The test site had a genetically aligned model inbred-clonal population of S. triandra. One-year willow saplings grown from unrooted cuttings were chosen as a study material. The development dynamics of S. triandra shoots was studied in four clones and in two different years with excessive moisture. The second year of observations differed from the previous one by an excess of precipitation during the cuttings rooting. Under experimental conditions, the maximum length of annual shoots was 210–220 cm, regardless of the year of observation. The cyclicality was determined in the shoots’ daily growth’s variations. The full seasonal development cycle of shoots includes four multi-day cycles. The second and third multi-day cycles are characterised by the greatest daily growth of shoots in the first half of summer. The maximum daily growth in both years of observation was 4.1–4.9 cm/day and occurred in early summer. The spring and late summer daily growth of most shoots did not exceed 2.3–2.7 cm/day. In the second year of observation, the late-summer daily growth (on average 1.9 cm/day) was slightly higher than in the first year (on average 1.6 cm/day). The synchronization of the shoots development in the beginning of summer was revealed, regardless of the year of observation and the clones’ factor. Excessive moisture during the rooting of cuttings lead to a shift in the peak values of daily growth at a later date. Against the background of an uneven distribution of precipitation, the influence of the clones’ factor on the seasonal dynamics of daily growth was revealed. When studying the growth and development of shoots in S. triandra clones, it is necessary to take into account the uneven distribution of precipitation in the first half of the vegetation period.

About the authors

A. A. Afonin

Bryansk State University

Author for correspondence.
Email: afonin.salix@gmail.com
Russia, 241036, Bryansk, Bezhitskaya st., 14

References

  1. Анциферов Г.И. Ива. М.: Лесная промышленность, 1984. 101 с.
  2. Афонин А.А. Сезонная динамика длины междоузлий Salix triandra L. (Salicaceae) на фоне кратковременной атмосферной засухи // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2021а. № 1. С. 104–112. https://doi.org/10.18522/1026-2237-2021-1-104-112
  3. Афонин А.А. Эпигенетическая изменчивость структуры сезонной динамики развития побегов ивы трехтычинковой (Salix triandra, Salicaceae) // Вестник Оренбургского государственного педагогического университета. Электронный научный журнал. 2021б. № 2(38). С. 1–14. http://vestospu.ru/archive/2021/articles/1_38_ 2021.pdf. https://doi.org/10.32516/2303-9922.2021.38.1
  4. Доклад об особенностях климата на территории Российской Федерации за 2020 год. Москва, 2021. 104 с. http://www.meteorf.ru/upload/pdf_download/doklad_klimat2020.pdf (дата обращения 23.08.2021 г.).
  5. Литвинова О.С. Влияние декадного атмосферного увлажнения на урожайность яровой пшеницы в лесостепной зоне Новосибирской области // Известия РАН. Серия географическая. 2021. Т. 85. № 2. С. 274–283. https://doi.org/10.31857/S2587556621020060
  6. Погода и климат. Климатический монитор. Брянск. http://www.pogodaiklimat.ru/monitor.php?id=26898 (дата обращения 02.09.2021 г.).
  7. Санникова Е.Г., Попова О.И., Компанцева Е.В. Ива трехтычинковая (Salix triandra L.) – перспективы и возможности использования в медицине и фармации // Фармация и фармакология. 2018. № 6(4). С. 318–339.
  8. Berlin S., Hallingbäck H.R., Beyer F., Nordh N.-E., Weih M., Rönnberg-Wästljung A.-C. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years // Annals of Botany. 2017. V. 120. № 1. P. 87–100. https://doi.org/10.1093/aob/mcx029
  9. Cortés A.J., Restrepo-Montoya M., Bedoya-Canas L.E. Modern Strategies to Assess and Breed Forest Tree Adaptation to Changing Climate // Frontiers in Plant Science. 2020. V. 11. P. 583323. https://doi.org/10.3389/fpls.2020.583323
  10. Fredette C., Labrecque M., Comeau Y., Brisson J. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix // J. Environmental Management. 2019. V. 246. P. 526–537. https://doi.org/10.1016/j.jenvman.2019.06.010
  11. Gligorić E., Igić R., Suvajdžić L., Grujić-Letić N. Species of the genus Salix L.: biochemical screening and molecular docking approach to potential acetylcholinesterase inhibitors // Applied Sciences. 2019. V. 9. № 9. P. 1842. https://doi.org/10.3390/app9091842
  12. Harayama H., Uemura A., Utsugi H., Han Q., Kitao M., Maruyama Y. The effects of weather, harvest frequency, and rotation number on yield of short rotation coppice willow over 10 years in northern Japan // Biomass and Bioenergy. 2020. V. 142. P. 105797. https://doi.org/10.1016/j.biombioe.2020.105797
  13. Keita N., Bourgeois B., Evette A., Tisserant M., González E., Breton V., Goulet C., Poulin M. Growth Response of Cuttings to Drought and Intermittent Flooding for Three Salix Species and Implications for Riverbank Soil Bioengineering // Environmental Management. 2021. V. 67. P. 137–1144. https://doi.org/10.1007/s00267-021-01444-3
  14. Ma X., Pang Z., Wu J., Zhang G., Dai Y., Zou J., Kan H. Seasonal pattern of stem radial growth of Salix matsudana and its response to climatic and soil factors in a semi-arid area of North China // Global Ecology and Conservation. 2021. V. 28. P. e01701. https://doi.org/10.1016/j.gecco.2021.e01701
  15. Noleto–Dias C., Wu,Y., Bellisai A., Macalpine W., Beale M.H., Ward J.L. Phenylalkanoid Glycosides (Non-Salicinoids) from Wood Chips of Salix triandra × dasyclados Hybrid Willow // Molecules. 2019. V. 24. № 6. P. 1152. https://doi.org/10.3390/molecules24061152
  16. Powers M.D., Pregitzer K.S., Palik B.J., Webstera C.R. Water relations of pine seedlings in contrasting overstory environments // Forest Ecology and Management. 2009. V. 258. № 7. P. 1442–1448. https://doi.org/10.1016/j.foreco.2009.06.040
  17. Richards T.J., Karacic A., Apuli R.P., Weih M., Ingvarsson P.K., Rönnberg–Wästljung A.C. Quantitative genetic architecture of adaptive phenology traits in the deciduous tree, Populus trichocarpa (Torr. and Gray) // Heredity. 2020. № 125. P. 449–458. https://doi.org/10.1038/s41437-020-00363-z
  18. Rodríguez M.E., Doffo G.N., Cerrillo T., Luquez V.M.C. Acclimation of cuttings from different willow genotypes to flooding depth level // New Forests. 2018. V. 49. № 3. P. 415–427. https://doi.org/10.1007/s11056-018-9627-7
  19. Skvortsov A.K. Willows of Russia and adjacent countries. Taxonomical and geographical revision. Joensuu: University of Joensuu, 1999. 307 p.
  20. Stolarski M.J., Szczukowski S., Tworkowsk J., Krzyżaniak M. Extensive Willow Biomass Production on Marginal Land // Polish Journal of Environmental Studies. 2019. V. 28. № 6. P. 4359–4367. https://doi.org/10.15244/pjoes/94812
  21. Weih M., Nordh N.-E., Manzoni S., Hoeber S. Functional traits of individual varieties as determinants of growth and nitrogen use patterns in mixed stands of willow (Salix spp.) // Forest Ecology and Management. 2021. V. 479. P. 118 605. https://doi.org/10.1016/j.foreco.2020.118605
  22. Wu D., Wang Y., Zhang L., Dou L., Gao L. The complete chloroplast genome and phylogenetic analysis of Salix triandra from China // Mitochondrial DNA Part B. 2019. V. 4. № 2. P. 3571–3572. https://doi.org/10.1080/23802359.2019.1674743
  23. Wu Q., Liang X., Dai X., Chen Y., Yin T. Molecular discrimination and ploidy level determination for elite willow cultivars // Tree Genetics & Genomes. 2018. V. 14. P. 65. https://doi.org/10.1007/s11295-018-1281-x
  24. Zhang J., Yuan H., Li Y., Chen Y., Liu G., Ye M., Yu C., Lian B., Zhong F., Jiang Y., Xu J. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz. // Horticulture Research. 2020. V. 7. P. 201. https://doi.org/10.1038/s41438-020-00424-8
  25. Zhu Y., Wang G., Li R. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau // PLoS ONE. 2016. V. 11. № 5. P. e0156586. https://doi.org/10.1371/journal.pone.0156586

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (39KB)
3.

Download (39KB)
4.

Download (251KB)
5.

Download (421KB)

Copyright (c) 2023 А.А. Афонин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies