The Correlation between the Radial Growth of Coniferous Trees and the Normalised Difference Vegetation Index

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is dedicated to analysing of the nature of the relationship between the radial growth of trees and remote sensing data. The calculations performed showed that there are certain connections between the satellite data and the values of the first differences in the widths of tree rings, but the strength of these correlations depends on the uniformity of the plantation trees’ radial growth processes. The less synchronous in time are the series of the first differences in the widths of the tree rings (FD WTR), the weaker are the connections between the remote sensing data and the radial increment. Another factor influencing the nature of the relationship between the satellite data and the radial growth is damage to trees. Thus, weak or lacking links between satellite and field data can still be observed and the reason for this is the heterogeneity in growth processes periods of different trees in the stand.

About the authors

V. G. Soukhovolsky

Forest Institute, Siberian Branch of the RAS; Federal Research Centre Krasnoyarsk Science Centre, Siberian branch of the RAS

Author for correspondence.
Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50, bldg. 28; Russia, 660036, Krasnoyarsk, Akademgorodok, 50

A. V. Kovalev

Federal Research Centre Krasnoyarsk Science Centre, Siberian branch of the RAS

Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50

V. I. Voronin

Siberian institute of plants physiology and biochemistry, Siberian branch of the RAS

Email: soukhovolsky@yandex.ru
Russia, 664033, Irkutsk, Lermontova st., 132

V. A. Oskolkov

Siberian institute of plants physiology and biochemistry, Siberian branch of the RAS

Email: soukhovolsky@yandex.ru
Russia, 664033, Irkutsk, Lermontova st., 132

Yu. D. Ivanova

Institute of Biophysics, Siberian Branch of the RAS

Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50, bldg. 50

References

  1. Ваганов Е.А. Регистрация потепления в текущем столетии клетками годичных колец деревьев // Доклады Академии наук. 1996. Т. 351. № 2. С. 281–283.
  2. Калинина Е.В., Кнорре А.А., Фонти М.В., Ваганов Е.А. Сезонное формирование годичных колец лиственницы сибирской и сосны обыкновенной в зоне южной тайги Средней Сибири // Экология. 2019. № 3. С. 182–188.
  3. Медведева М.А., Елсаков В.В., Савин И.Ю., Барталев С.А. О связи фенологического развития растительности таежной зоны с величиной NDVI, определенной по спутниковым данным // Современные проблемы дистанционного зондирования Земли из космоса. 2010. Т. 7. № 1. С. 319–329.
  4. Миклашевич Т.С., Барталев С.А. Метод определения фенологических характеристик растительного покрова на основе временных рядов спутниковых данных// Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 1. С. 9–24.
  5. Суховольский В.Г. Иванова Ю.Д., Овчинникова Т.М., Ботвич И.Ю. Моделирование фенодинамики листопадных древесных пород // Лесоведение. 2017. № 4. С. 293–302.
  6. Babst F., Bodesheim P., Charney N., Friend A.D., Girardin M.P., Klesse S., Moore D.J.P., Seftigen K., Dietze M.C., Eckes A.H., Enquist B., Frank D.C., Mahecha M.D., Poulter B., Record S., Trouet V., Turton R.H., Zhang Z., Evans M.E.K. When tree rings go global: challenges and opportunities for retro- and prospective insight // Quaternary Science Reviews. 2018. V. 197. P. 1–20.
  7. Beck P.S.A., Andreu–Hayles L., D’Arrigo R.D., Anchukaitis K.J., Tucker C.J., Pinzón J.E., Goetz S.J. A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America // Global and Planetary Change. 2013. V. 100. P. 109–118.
  8. Berner L.T., Beck P.S.A., Bunn A.G., Goetz S.J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia // Global Change Biology. 2013. V. 19. P. 3449–3462.
  9. Bunn A.G., Hughes M., Kirdyanov A.V., Losleben M., Shishov V.V., Berner L.T., Oltchev A., Vaganov E.A. Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia // Environmental Research Letters. 2013. V. 8(035034).
  10. Büntgen U., Trouet V., Frank D., Leuschner H.H., Friedrichs D., Luterbacher J., Esper J. Tree-ring indicators of German summer drought over the last millennium // Quaternary Science Reviews. 2010. V. 29. P. 1005–1016.
  11. Camarero J.J., Franquesa M., Sangüesa–Barreda G. Timing of drought triggers distinct growth responses in holm oak: implications to predict warming-induced forest defoliation and growth decline // Forests. 2015. V. 6. P. 1576–1597.
  12. Cuny H.E., Rathgeber C.B.K., Frank D., Fonti P., Makinen H., Prislan P., Rossi S., Martinez Del Castillo E., Campelo F., Vavrčik H., Camarero J.J, Bryukhanova M.V., Jyske T., Gričar J., Gryc V., De Luis M., Vieira J., Kirdyanov A.V., Oberhuber W., Treml V., Huang J.G., Li X., Swidrak I., Deslauriers A., Liang E., Nöjd P., Gruber A., Nabais C., Morin H., Krause C., King G., Fournier M. Woody biomass production lags stem-girth increase by over one month in coniferous forests // Nature Plants. 2015. V. 1. P. 6.
  13. Fritts H.C. Tree Rings and Climate. Academic Press, 1976. 567 p.
  14. Hirota M., Holmgren M., Van Nes E.H., Scheffer M. Global resilience of tropical forest and savanna to critical transitions // Science. 2011. V. 334. P. 232–235.
  15. http://web.utk.edu/~grissino/software.htm
  16. Kaufmann R.K., D’Arrigo R.D., Paletta L.F., Tian H.Q., Jolly W.M., Myneni R.B. Identifying climatic controls on ring width: the timing of correlations between tree rings and NDVI // Earth Interactions. 2008. V. 12. P. 1–14.
  17. Lloyd A.H., Fastie C.L. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska // Climate Change. 2002. V. 52. P. 481–509.
  18. Myneni R.B., Hall F.G., Sellers P.J., Marshak A.L. The interpretation of spectral vegetation indexes // IEEE Transactions on Geoscience and Remote Sensing. 1995. V. 33. P. 481–486.
  19. Pasho E., Alla A.Q. Climate impacts on radial growth and vegetation activity of two co-existing Mediterranean pine species // Canadian J. Forest Research. 2015. V. 45. P. 1748–1756.
  20. Sass-Klaassen U., Fonti P., Cherubini P., Gričar J., Robert E.M.R., Steppe K., Bräuning A. A tree-centered approach to assess impacts of extreme climatic events on forests // Frontiers in Plant Science. 2016. V. 7. P. 1069.
  21. Vicente-Serrano S.M. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region // Natural Hazards. 2007. V. 40. P. 173–208.
  22. Zuidema P.A., Frank D. Forests: Tree rings track climate trade-offs // Nature. 2015. V. 523. P. 531.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (79KB)
3.

Download (54KB)
4.

Download (62KB)
5.

Download (64KB)
6.

Download (59KB)

Copyright (c) 2023 В.Г. Суховольский, А.В. Ковалев, В.И. Воронин, В.А. Осколков, Ю.Д. Иванова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies