Synthesis and crystal strucrure of Bis-(2,6-diaminopyridine) tetrachlorid zinc(II)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the presented work, the synthesis of a complex resulting from the reaction of 2,6-diaminopyridine with the Zn(II) ion in an alcohol solution of hydrochloric acid is described for the first time. The composition, molecular and crystal structure of the synthesized complex were determined by X-ray structural analysis. The structure of the new complex, its crystallographic data, and the geometry of hydrogen bonds in the crystal system were determined. The composition of the metal complex was confirmed by elemental analysis, and the existing chemical bonds were studied by IR spectroscopy. The surface of the crystals was studied according to Hirschfeld. To determine the stability of the obtained complex, its thermal analysis was carried out. The stability of the complex, caused by intramolecular hydrogen bonds, was confirmed.

全文:

受限制的访问

作者简介

Y. Nazarov

Termez State University

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Termez

X. Turaev

Termez State University

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Termez

J. Ashurov

Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Tashkent

Sh. Kasimov

Termez State University

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Termez

J. Suyunov

Termez State University

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Termez

N. Ermuratova

Termez Engineering and Technology Institute

Email: kornilovkn@mgupp.ru
乌兹别克斯坦, Termez

K. Kornilov

Russian Biotechnological University

编辑信件的主要联系方式.
Email: kornilovkn@mgupp.ru
俄罗斯联邦, Moscow

参考

  1. Liu S.H., Chen J.-D., Liou L.-S., Wang J.-C. // Inorg. Chem. 2001. V. 40. № 25. P. 6499. https://doi.org/10.1021/ic010529c
  2. Moussa O.B., Chebbi H., Zid M.F. // J. Molec. Struct. 2019. V. 1180. P. 72. https://doi.org/10.1016/j.molstruc.2018.11.077
  3. Andreini C., Bertini I. // J. Inorg. Biochem. 2012. V. 111. P. 150. https://doi.org/10.1016/j.jinorgbio.2011.11.020
  4. Balan A.M., Ashoki R.F.N., Vasanthi M. et al. // Int. J. Life Sci. Pharm. Res. 2013. V. 3. № 2. P. 67. https://www.ijlpr.com/index.php/journal/article/view/376/278
  5. Crea F., De Stefano C., Milea D., Sammartano S. // J. Solution Chem. 2009. V. 38. P. 115. https://link.springer.com/article/10.1007/s10953-008-9357-0
  6. Cigala R.M., Crea F., De Stefano С. et al. // J. Mol. Liq. 2012. V. 165. P. 143. https://doi.org/10.1016/j.molliq.2011.11.002
  7. Cigala R.M., Crea F., De Stefano C. et al. // Monatch. Chem. 2015. V. 146. P. 527. https://doi.org/10.1007/s00706-014-1394-3
  8. Umirova G.A., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. № 9. P. 856. https://doi.org/10.1107/S2056989023007466
  9. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2023. V. 8. № 12. P. x231032. https://doi.org/10.1107/S2414314623010325
  10. Shoukry A.A., Al-Mhayawi S.R. // Eur. J. Chem. 2013. № 4. Р. 260. https://doi.org/10.5155/eurjchem.4.3.260-267.800
  11. Hall V.M., Bertke J.A., Swift J.A. // Acta Cryst. С. 2017. V. 73. № 11. P. 990. https://doi.org/10.1107/S2053229617014978
  12. Sakong C. // Dyes and Pigments. 2011. V. 88. № 2. P. 166. https://doi.org/10.1016/j.dyepig.2010.06.003
  13. Coelho P.J. // Dyes and Pigments. 2012. V. 92. № 1. P. 745. https://doi.org/10.1016/j.dyepig.2011.06.019
  14. Groom C.R. // Acta Cryst. B. 2016. V. 72. № 2. P. 171. https://doi.org/10.1107/S2052520616003954
  15. Raposo M.M. // Tetrahedron. 2011. V. 67. № 29. P. 5189. https://doi.org/10.1016/j.tet.2011.05.053
  16. Khanmohammadi H. // Dyes and Pigments. 2013. V. 98. № 3. P. 557. https://doi.org/10.1016/j.dyepig.2013.03.023
  17. Mahmoud W.H., Sayed F.N., Mohamed G.G. // Appl. Organometall. Chem. 2016. V. 30. № 11. P. 959. https://doi.org/10.1002/aoc.3529
  18. Merino E. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3835. https://doi.org/10.1039/C0CS00183J
  19. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.40.84a. 2020. Rigaku Corporation, Oxford, UK
  20. Sheldrick G.M. // Acta Cryst. А. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://dx.doi.org/10.1107/S2053229614024218
  22. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://dx.doi.org/10.1107/S0021889808042726
  23. Nazarov Y.E., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2024. V. 9. № 6. Р. x240570. https://doi.org/10.1107/S2414314624005704
  24. Ben Moussa O., Chebbi H., Zid M.F. // Acta Cryst. E. 2018. V. 74. № 4. P. 436. https://doi.org/10.1107/S2056989018003171
  25. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. P. 1083. https://doi.org/10.1107/S2056989023009350
  26. Mghandef M., Boughzala H. // Acta Cryst. E. 2015. V. 71. № 5. P. 555. https://doi.org/10.1107/S2056989015007707
  27. Nasr M.B., Soudani S., Lefebvre F. et al. // J. Mol. Struct. 2017. V. 138. P. 71. https://doi.org/10.1016/j.molstruc.2017.02.098
  28. Spackman P.R., Byrom P.J. // Chem. Phys. Lett. 1997. V. 267. № 3–4. Р. 215. https://doi.org/10.1016/S0009-2614(97)00100-0

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the complex compound [ZnCl4]2–(2,6-DAPY-Н+)2.

下载 (82KB)
3. Fig. 2. Complex [ZnCl4]2–(2,6-DAPY-Н+)2: a – π–π interactions on the three-dimensional Hirschfeld surface mapped by di/de; b – π–π interactions in the pyridine rings.

下载 (191KB)
4. Fig. 3. Three-dimensional Hirschfeld surface in the (C5H8N3)2[ZnCl4] complex and two-dimensional fingerprint region mapped by dnorm representing the H Cl/Cl H interactions of cations and anions in it: a – neutral molecule, b – cation, c – anion.

下载 (440KB)
5. Fig. 4. Two-dimensional fingerprint region of the complex compound (C5H8N3)2[ZnCl4], describing the fractions of atoms participating in intermolecular interactions and the contributions of pairs of atoms.

下载 (566KB)
6. Fig. 5. IR spectrum of the metal complex (C5H8N3)2[ZnCl4].

下载 (197KB)
7. Fig. 6. Thermal analysis of the complex compound C10H16N6ZnCl4: 1 – thermogravimetric curve (TGA), 2 – differential thermal analysis (DTA) curve.

下载 (172KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».