Комбинаторная сложность сигнатуры натурального тайлинга

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработана аддитивная модель расчета комбинаторной (шэнноновской) сложности сигнатуры натурального тайлинга, который используют для описания топологических свойств микро- и мезопористых материалов, в частности цеолитов. Для расчета сложности данного вида cоставлен программный код на языке Python. Код протестирован для тайлингов цеолитного типа, обнаружены корреляции рассчитанной сложности сигнатуры тайлинга и комбинаторной сложности производящей тайлинг структуры.

Полный текст

Доступ закрыт

Об авторах

Д. А. Банару

Институт геохимии и аналитической химии им. В.И. Вернадского РАН

Автор, ответственный за переписку.
Email: banaru@geokhi.ru
Россия, Москва

Список литературы

  1. Shannon C.E. // Bell Syst. Tech. J. 1948. V. 27. P. 379. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  2. Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. https://doi.org/ 10.3390/e23101240
  3. Sabirov D., Tukhbatullina A., Shepelevich I. // Liquids. 2021. V. 1. P. 25. https://doi.org/ 10.3390/liquids1010002
  4. Sabirov D., Tukhbatullina A.A., Shepelevich I.S. // J. Mol. Graph. Model. 2022. V. 110. P. 108052. https://doi.org/10.1016/j.jmgm.2021.108052
  5. Zimina A.D., Shepelevich I.S., Sabirov D.S. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 2099. https://doi.org/ 10.1134/S0036024423100291
  6. Zimina A.D., Tukhbatullina A.A., Sabirov D.S. // Dokl. Phys. Chem. 2023. V. 513. P. 181. https://doi.org/ 10.1134/S0012501623600365
  7. Sabirov D.S., Zimina A.D., Tukhbatullina A.A. // J. Math. Chem. 2024. V. 62. P. 819. https://doi.org/ 10.1007/s10910-023-01566-5
  8. Krivovichev S. // Acta Cryst. A. 2012. V. 68. P. 393. https://doi.org/ 10.1107/S0108767312012044
  9. Krivovichev S.V. // Angew. Chemie. 2014. V. 53. P. 654. https://doi.org/ 10.1002/anie.201304374
  10. Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/ 10.1107/S205252061501906X
  11. Krivovichev S.V. // Z. Krist. 2018. V. 233. P. 155. https://doi.org/ 10.1515/zkri-2017-2117
  12. Krivovichev S.V., Krivovichev V.G. // Acta Cryst. A. 2020. V. 76. P. 429. https://doi.org/ 10.1107/S2053273320004209
  13. Hornfeck W. // Acta Cryst. A. 2020. V. 76. P. 534. https://doi.org/ 10.1107/S2053273320006634
  14. Hornfeck W. // Z. Krist. 2022. V. 237. P. 127. https://doi.org/ doi: 10.1515/zkri-2021-2062
  15. Kaußler C., Kieslich G. // J. Appl. Cryst. 2021. V. 54. P. 306. https://doi.org/ 10.1107/s1600576720016386
  16. Hallweger S.A., Kaußler C., Kieslich G. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 9196. https://doi.org/ 10.1039/D2CP01123A
  17. Banaru D., Hornfeck W., Aksenov S., Banaru A. // CrystEngComm. 2023. V. 25. P. 2144. https://doi.org/ 10.1039/D2CE01542K
  18. Siidra O.I., Zenko D.S., Krivovichev S.V. // Am. Mineral. 2014. V. 99. P. 817.
  19. Banaru A.M., Banaru D.A., Aksenov S.M. // Crystallography Reports. 2022. V. 67. P. 521. https://doi.org/ 10.1134/S106377452203004X
  20. Banaru A.M., Banaru D.A., Aksenov S.M. // Crystallography Reports. 2022. V. 67. P. 1133. https://doi.org/ 10.1134/S1063774522070410
  21. Юшкин Н.П., Шафрановский И.И., Янулов К.П. Законы симметрии в минералогии. Л.: Наука, 1987. 335 с.
  22. Voytekhovsky Y.L. // Vestn. Geosci. 2022. V. 325. P. 44. https://doi.org/ 10.19110/geov.2022.1.4
  23. Tuomisto H. // Oecologia. 2010. V. 164. P. 853. https://doi.org/ 10.1007/s00442-010-1812-0
  24. Banaru D.A., Banaru A.M., Aksenov S.M. // Crystallograhpy Reports. 2024. V. 69. № 7. P. 1019. https://doi.org/ 10.1134/S1063774524601503
  25. Krivovichev S.V., Borovichev E.A. // Biogenic–Abiogenic Interactions in Natural Anthropogenuc Systems 2022 / Ed. Frank-Kamenetskaya O.V. et al. Cham: Springer International Publishing, 2023. P. 651.
  26. Blatov V.A., Delgado-Friedrichs O., O’Keeffe M., Proserpio D.M. // Acta Cryst. A. 2007. V. 63. P. 418. https://doi.org/ 10.1107/S0108767307038287
  27. Blatov V.A. // J. Struct. Chem. 2009. V. 50. P. 160. https://doi.org/ 10.1007/s10947-009-0204-y
  28. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/ 10.1021/cg500498k
  29. Csiszár I. // Entropy. 2008. V. 10. P. 261. https://doi.org/ 10.3390/e10030261
  30. Sabirov D.S. // Comput. Theor. Chem. 2020. V. 1187. P. 112933. https://doi.org/ 10.1016/j.comptc.2020.112933
  31. Anurova N.A., Blatov V.A., Ilyushin G.D., Proserpio D.M. // J. Phys. Chem. C. 2010. V. 114. P. 10160. https://doi.org/ 10.1021/jp1030027
  32. Krivovichev S.V. // Micropor. Mesopor. Mater. 2013. V. 171. P. 223. https:// doi.org/10.1016/j.micromeso.2012.12.030
  33. Банару Д.А. // Матер. Междунар. молодежного науч. форума “ЛОМОНОСОВ-2021”. Секция “Геология”, подсекция “Кристаллография и Кристаллохимия”. М.: МАКС Пресс, 2021. https://lomonosov-msu.ru/archive/Lomonosov_2021/data/section_6_22056.htm
  34. Database of Zeolite Structures. https://www.iza-structure.org/databases/
  35. Banaru D.A., Aksenov S.M., Banaru A.M., Oganov A.R. // Z. Krist. 2024. V. 239. P. 207. https://doi.org/ doi: 10.1515/zkri-2024-0062
  36. Krivovichev S.V. // Angew. Chemie. 2014. V. 53. P. 654. https://doi.org/ 10.1002/anie.201304374
  37. Rashchenko S.V., Bekker T.B. // J. Struct. Chem. 2021. V. 62. P. 1935. https://doi.org/ 10.1134/S002247662112012X
  38. Topnikova A.P., Eremina T.A., Belokoneva E.L. et al. // Micropor. Mesopor. Mater. 2020. V. 300. P. 110147. https://doi.org/ 10.1016/j.micromeso.2020.110147
  39. Aksenov S.M., Yamnova N.A., Borovikova E.Y. et al. // J. Struct. Chem. 2020. V. 61. P. 1760. https://doi.org/ 10.1134/S0022476620110104
  40. Кобелева Е.А., Аксенов С.М., Банару А.М. и др. // Матер. XII Всерос. молодежной науч. конф. “Минералы: строение, свойства, методы исследования”. Институт геологии и геохимии УрО РАН, Екатеринбург, 2021. C. 74.
  41. Aksenov S.M., Kabanova N.A., Chukanov N.V. et al. // Acta Cryst. B. 2022. V. 78. P. 80. https://doi.org/ 10.1107/S2052520621010015
  42. Aksenov S.M., Yamnova N.A., Kabanova N.A. et al. // Crystals. 2021. V. 11. P. 237. https://doi.org/ 10.3390/cryst11030237
  43. Kabanova N.A., Panikorovskii T.L., Shilovskikh V.V. et al. // Crystals. 2020. V. 10. P. 1016. https://doi.org/ 10.3390/cryst10111016
  44. Chukanov N.V., Pasero M., Aksenov S.M. et al. // Mineral. Mag. 2023. V. 87. P. 18. https://doi.org/ 10.1180/mgm.2022.105
  45. Vaitieva Y.A., Chukanov N.V., Vigasina M.F. et al. // J. Struct. Chem. 2024. V. 65. P. 1357. https://doi.org/ 10.1134/S0022476624070072
  46. Dal F., Aksenov S.M., Burns P.C. // J. Solid State Chem. 2019. V. 271. P. 126. https://doi.org/ 10.1016/j.jssc.2018.12.044
  47. Chong S., Aksenov S.M., Dal Bo F. et al. // Z. Anorg. Allg. Chemie. 2019. V. 645. P. 981. https://doi.org/10.1002/zaac.201900092
  48. Aksenov S.M., Pavlova E.T., Popova N.N. et al. // Solid State Sci. 2024. V. 151. P. 107525. https://doi.org/ 10.1016/j.solidstatesciences.2024.107525

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Тайл [436] одноименного натурального тайлинга структуры пирохлора Ca2Nb2O6F.

Скачать (67KB)
3. Рис. 2. Диаграмма рассеяния Htiling и IG (а), Htiling,tot и IG,tot (б) для каркасов цеолитного типа.

Скачать (122KB)
4. Рис. 3. Доля натуральных тайлингов разного класса сложности для каркасов цеолитного типа.

Скачать (52KB)
5. Дополнительные материалы
Скачать (37KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».