Динамика обратимого фазового перехода “полупроводник–металл” в тонких пленках SmS при механических и термических воздействиях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты комплексного исследования динамики фазовых переходов в тонких пленках SmS: механически индуцированного полировкой перехода полупроводниковой фазы в металлическую и термически индуцированного обратного перехода из металлической в полупроводниковую фазу. Обнаружено, что обратный фазовый переход происходит при охлаждении образца в интервале температур 408–373 К. Изменение фазового и элементного состава тонких пленок наблюдается при описываемых фазовых превращениях приповерхностного слоя. Исходя из полученных данных можно рассматривать тонкие пленки SmS как структуры с предсказуемой и требуемой динамикой обратимых фазовых превращений, что в дальнейшем может быть использовано для создания функциональных материалов и элементов датчиков давления широкого спектра.

Об авторах

И. С. Волчков

Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: volch2862@gmail.com
Москва, Россия

Е. Б. Баскаков

Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Москва, Россия

Д. Р. Хайретдинова

Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Москва, Россия

В. М. Каневский

Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Москва, Россия

Список литературы

  1. Каминский В.В., Соловьев С.М. // ФТТ. 2001. Т. 43. № 3. С. 423.
  2. Barla A., Sanchez J.P., Haga Y. et al. // Phys. Rev. Lett. 2004. V. 92. № 6. P. 066401. https://doi.org/10.1103/PhysRevLett.92.066401
  3. Banerjee D., Plekhanov E., Rungger I. et al. // Phys. Rev. B. 2022. V. 105. № 19. P. 195135. https://doi.org/10.1103/PhysRevB.105.195135
  4. Sousanis A., Smet P., Poelman D. // Materials. 2017. V. 10. № 8. P. 953. https://doi.org/10.3390/ma10080953
  5. Kaldis E., Wachter P. // Solid State Commun. 1972. V. 11. № 7. P. 907. https://doi.org/10.1016/0038-1098(72)91005-8
  6. Rogers E., Smet P.F., Dorenbos P. et al. // J. Phys. Condens. Mater. 2010. V. 22. № 1. P. 015005. https://doi.org/10.1088/0953-8984/22/1/015005
  7. Sousanis A., Poelman D., Detavernier C. et al. // Sensors. 2019. V. 19. № 20. P. 4390. 10.3390/s19204390' target='_blank'>https://doi: 10.3390/s19204390
  8. Imura K., Matsubayashi K., Suzuki H.S. et al. // J. Phys. Soc. Jpn. 2009. V. 78. № 1. P. 104602. https://doi.org/10.1143/JPSJ.78.104602
  9. Jarrige I., Yamaoka H., Rueff J.P. et al. // Phys. Rev. B. 2013. V. 87. № 11. P. 115107. https://doi.org/10.1103/PhysRevB.87.115107
  10. Kirk J.L., Vedam K., Narayanamurti V. et al. // Phys. Rev. B. 1972. V. 6. № 8. P. 3023. https://doi.org/10.1103/PhysRevB.6.3023
  11. Виноградов А.А., Каминский В.В., Смирнов И.А. // ФТТ. 1985. Т. 27. № 4. С. 1121.
  12. Стрелов В.И., Баскаков Е.Б., Бендрышев Ю.Н. и др. // Кристаллография. 2019. Т. 64. № 2. С. 281. https://doi.org/10.1134/S0023476119020292
  13. Каминский В.В., Молодых А.А., Степанов Н.Н. и др. // Научное приборостроение. 2011. Т. 21. № 2. С. 53.
  14. Bronovets M.A., Volodin N.M., Mishin Y.N. // Mater. Lett. 2020. V. 267. P. 127467. https://doi.org/10.1016/j.matlet.2020.127467
  15. Takenaka K., Asai D., Kaizu R. et al. // Sci. Rep. 2019. V. 9. № 1. P. 122. https://doi.org/10.1038/s41598-018-36568-w
  16. Yokoyama Y., Hasegawa H., Mizuno Y. et al. // Phys. Rev. B. 2019. V. 100. № 24. P. 245143. https://doi.org/10.1103/PhysRevB.100.245143
  17. Zhu K., Ding W., Sun W. et al. // J. Mater. Sci.: Mater. Electron. 2016. V. 27. P. 2379. https://doi.org/10.1007/s10854-015-4035-7
  18. Sun W., Zhu K., Xu H. et al. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 697. https://doi.org/10.1007/s10854-016-5578-y
  19. Andreev O.V., Ivanov V.V., Gorshkov A.V. et al. // Eurasian Chem.-Technol. J. 2016. V. 18. № 1. P. 55. https://doi.org/10.18321/ectj396
  20. Каминский В.В., Молодых А.А., Полухин И.С. и др. // Письма в ЖТФ. 2014. Т. 40. № 11. С. 1.
  21. Каминский В.В., Сидоров В.А., Степанов Н.Н. и др. // ФТТ. 2013. Т. 55. № 2. С. 257.
  22. Пронин И.А., Якушова Н.Д., Димитров Д.Ц. и др. // Письма в ЖТФ. 2017. Т. 43. № 18. С. 11. https://doi.org/10.21883/PJTF.2017.18.45028.16754
  23. Каминский В.В., Соловьев С.М., Шаренкова Н.В. // Письма в ЖТФ. 2018. Т. 44. № 23. С. 85. https://doi.org/10.21883/PJTF.2018.23.47014.17235
  24. Volchkov I., Baskakov E., Strelov V. et al. // J. Rare Earth. 2022. V. 40. № 11. P. 1778. https://doi.org/10.1016/j.jre.2022.01.008
  25. Каминский В.В., Дидик В.А., Казанин М.М. и др. // Письма в ЖТФ. 2009. Т. 35. № 21. С. 16.
  26. Калинин Ю.Е., Чуйко А.Г., Новиков Е.Г. // Альтернативная энергетика и экология. 2015. Т. 3. № 167. С. 28.
  27. Щенников В.В., Степанов Н.Н., Смирнов И.А. и др. // ФТТ. 1988. Т. 30. № 10. С. 3105.
  28. Imura K., Ikeo Y., Sakamoto K. et al. // New Phys.: Sae Mulli. 2023. V. 73. P. 1094. https://doi.org/10.3938/NPSM.73.1094
  29. Deen P.P., Braithwaite D., Kernavanois N. et al. // Phys. Rev. B. 2005. V. 71. № 24. P. 245118. https://doi.org/10.1103/PhysRevB.71.245118
  30. Watanabe S. // J. Phys. Soc. Jpn. 2021. V. 90. № 2. P. 023706. https://doi.org/10.7566/JPSJ.90.023706
  31. Глушков В.В., Журкин В.С., Божко А.Д. и др. // Письма в ЖЭТФ. 2021. Т. 116. № 11. С. 770. https://doi.org/10.31857/S1234567822230057
  32. Баскаков Е.Б., Стрелов В.И. // Кристаллография. 2021.Т. 66. № 6. С. 925. https://doi.org/10.31857/S0023476121060059
  33. Волчков И.С., Баскаков Е.Б., Стрелов В.И. и др. // ЖТФ. 2019. Т. 45. № 22. С. 12. https://doi.org/10.21883/PJTF.2019.22.48641.17859

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».