Atomistic simulation of paratellurite α-TeO2 crystal. III. Anisotropy of ion transport under externally applied electric fields
- Autores: Ivanov-Schitz А.K.1
-
Afiliações:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Edição: Volume 70, Nº 1 (2025)
- Páginas: 68-72
- Seção: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://journals.rcsi.science/0023-4761/article/view/286250
- DOI: https://doi.org/10.31857/S0023476125010093
- EDN: https://elibrary.ru/ISQVEM
- ID: 286250
Citar
Resumo
The features of ion transfer in α-TeO2 paratellurite crystals under conditions of an external constant electric field have been studied by the method of molecular dynamics. It is shown that the anisotropy of ion transport is more pronounced when the E field is applied along the c axis: at E = 350 kV/mm, diffusion increases by about 2 times for crystals with oxygen vacancies and 3 times for samples with additional interstitial oxygen atoms.
Texto integral

Sobre autores
А. Ivanov-Schitz
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: alexey.k.ivanov@gmail.com
Rússia, Moscow
Bibliografia
- Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В., Симонов В.И. // Кристаллография. 1987. Т. 32. Вып. 3. С. 609.
- Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022-3719/21/i=25/a=009
- Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://doi.org/10.1016/0038–1098(68)90119-1
- Uchida N. // Phys. Rev. B. 1971. V. 4. P. 3736.
- Беляев Л.М., Бурков В.И., Гильварг А.Б. и др. // Кристаллография. 1975. Т. 20. Вып. 6. С. 1221.
- Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
- Акустические кристаллы. Справочник. Под. ред. Шаскольской М.П. М.: Наука, 1982. 632 с.
- Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647
- Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950. https://doi.org/10.7868/S0023476114060149
- Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // Письма в ЖЭТФ. 2018. Т. 107. С. 679. https://doi.org/10.7868/S0370274X18100119
- Kulikov A.G., Blagov A.E., Ilin A.S. et al. // J. Appl. Phys. 2020. V. 127. P. 065106. https://doi.org/10.1063/1.5131369
- Иванов-Шиц А.К. // Кристаллография. 2024. Т. 69. № 6. С. 1009. https://doi.org/10.31857/S0023476124060116
- Иванов-Шиц А.К. // Кристаллография. 2025. Т. 70. № 1. С. 62. https://doi.org/10.31857/S0023476125010089
- Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076
- English N.J., Waldron C.J. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12407. https://doi.org/10.1039/c5cp00629e
- English N.J. // Crystals. 2021. V. 11. P. 1405. https://doi.org/10.3390/cryst11111405
- Jain H., Nowick A. S. // Phys. Status Solidi. A. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242
- Wegener J., Kanert O., Küchler R. et al. // Z. Naturforsch. A. 1994. V. 49. P. 1151. https://doi.org/10.1515/zna-1994-1208
- Wegener J., Kanert O., Küchler R. et al. // Radiat. Eff. Defects Solids. 1995. V. 114. P. 277.
- Hartmann E., Kovács L. // Phys. Status Solidi. A. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105
Arquivos suplementares
