The study of temperature properties of I.H.P. structure and its application for filters on surface acoustic waves

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of investigation of temperature properties of I.H.P.-structures on multilayer lithium tantalate/silicon dioxide film/silicon substrate used to improve the characteristics of surface acoustic wave devices are presented. Finite element modeling of the test structures was performed in COMSOL software and the temperature frequency coefficient was calculated. A comparison of the calculated transmission coefficient of a resonator filter on a conventional 36°YX-cut lithium tantalate monocrystal substrate and an I.H.P.-filter at different temperature values is presented. The possibility of minimizing the temperature coefficient of frequency by selecting the thickness of the substrate layers is shown. Comparison of the obtained results with the known data showed good agreement. The practical significance consists in the use of modeling results and calculated parameters in the development of various classes of devices on multilayer substrates, including those with I.H.P.-structures.

Sobre autores

А. Koigerov

Saint Petersburg Electrotechnical University “LETI”

Autor responsável pela correspondência
Email: a.koigerov@gmail.com
Rússia, St. Petersburg

O. Balysheva

Saint-Petersburg State University of Aerospace Instrumentation (SUAI)

Email: balysheva@mail.ru
Rússia, St. Petersburg

Bibliografia

  1. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2016 IEEE Intern. Ultrason. Symp. (IUS), Tours, France, 18–21 September 2016. P. 1–4. https://doi.org/10.1109/ULTSYM.2016.7728455
  2. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2016 IEEE MTT-S Intern. Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. P. 1–4. https://doi.org/10.1109/MWSYM.2016.7540214
  3. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2017 IEEE Intern. Ultrason. Symp. (IUS), Washington, DC, USA, 6–9 September 2017. P. 1–8. https://doi.org/10.1109/ULTSYM.2017.8091876
  4. Takai T., Iwamoto H., Takamine Y. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019. V. 66. P. 1006. https://doi.org/10.1109/TUFFC.2019.2898046
  5. Nagatomo S., Iwamoto H., Taniguchi Y. // Proc. Symposium on Ultrasonic Electronics. 2019. V. 40. P. 25. https://www.jstage.jst.go.jp/article/use/40/0/40_1P3-2/_pdf
  6. Xiao Q., Dai M., Chen J. et al. // Acoust. Phys. 2019. V. 65. № 6. Р. 652.
  7. Chen P., Li G., Zhu Z. // Micromachines. 2022. V. 13. P. 656. https://doi.org/10.3390/mi13050656
  8. Qian Y., Shuai Y., Wu C. et al. // Piezoelectrics and Acoustooptics. 2023. V. 45. № 3. Р. 350.
  9. Takamine Y., Takai T., Iwamoto H. et al. // Proc. of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018. P. 1342. https://doi.org/10.23919/APMC.2018.8617381
  10. Kimura T., Omura M., Kishimoto Y., Hashimoto K. // IEEE MTT-S Intl. Microwave Symp. 2018. P. 846. https://doi.org/10.23919/APMC.2018.8617381
  11. Nakagawa R., Iwamoto H., Takai T. // Jpn. J. Appl. Phys. 2020. V. 59. № SKKC09. https://doi.org/10.35848/1347-4065/ab867c
  12. Qian Y., Shuai Y., Wu C. et al. // Micromachines. 2023. V. 14. P. 1929. https://doi.org/10.3390/mi14101929
  13. Pan H., Yang Y., Li L. et al. // Micromachines. 2024. V. 15. P. 12. https://doi.org/10.3390/mi15010012
  14. Zhang Q., Chen Z., Chen Y. et al. // Micromachines. 2021. V. 12. P. 141. https://doi.org/10.3390/mi12020141
  15. Kovacs G., Anhorn M., Engan H. et al. // Proc. 1990 IEEE Ultrasonic Symposium Honolulu. Hawaii. Dec. 1990. V. 1. P. 435. https://doi.org/10.1109/ULTSYM.1990.171403
  16. Aslam M.Z., Jeoti V., Karuppanan S. et al. // Proc. International Conference on Intelligent and Advanced System (ICIAS). 2018. P. 1. https://doi.org/10.1109/ICIAS.2018.8540581
  17. Wang Y., Liu X., Shang S. et al. // Proc. 2019 14th Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). 2019. P. 1. https://doi.org/10.1109/SPAWDA48812.2019.9019330
  18. Smith R.T., Welsh F.S. // J. Appl. Phys. 1971. V. 42. № 6. P. 2219. https://doi.org/10.1063/1.1660528
  19. Ma R., Liu W., Sun X., Zhou S., Lin D. // Micromachines. 2022. V. 13. P. 202. https://doi.org/10.3390/mi13020202
  20. Двоешерстов М.Ю., Петров С.Г., Чередник В.И., Чириманов А.П. // ЖТФ. 2001. Т. 71. № 4. С. 89.
  21. Morita T., Watanabe Y., Tanaka M., Nakazawa Y. // IEEE Ultrason. Symp. Proc. 1992. P. 95. https://doi.org/10.1109/ULTSYM.1992.276057
  22. Макаров В.М., Иванов П.Г., Данилов А.Л., Зая В.Г. // Радиотехника и электроника. 2008. Т. 53. № 3. С. 377.
  23. Койгеров А.С., Балышева О.Л. // Радиотехника и электроника. 2022. Т. 67. № 11. С. 1152. https://doi.org/10.31857/S0033849422110055

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies