Quasi-synchronous second harmonic generation in photonic crystal structures based on iodic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The frequency conversion efficiency of the long-wavelength part of the optical spectrum is considered. The problem of generating the second harmonic in two-dimensional photonic crystals based on iodic acid is considered in order to convert long-wave radiation into the visible range for subsequent registration by traditional silicon detectors. The problems of synthesis of two-dimensional photonic crystal structures for practical problems of nonlinear optics and photonics are discussed.

About the authors

A. A. Konovko

Lomonosov Moscow State University

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

A. V. Andreev

Lomonosov Moscow State University

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

V. V. Berezkin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow, 119333

Y. V. Grigoriev

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow, 11933

N. M. R. Kriman

Lomonosov Moscow State University

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

M. V. Reshetova

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow, 119333

N. V. Minaev

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow, 119333

O. E. Epifanov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow, 119333

V. E. Asadchikov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Author for correspondence.
Email: asad@crys.ras.ru
Moscow, 119333

References

  1. Pircher M., Götzinger E., Leitgeb R. et al. // Opt. Express. 2003. V. 11. № 18. P. 2190. https://doi.org/10.1364/oe.11.002190
  2. Terrazas-Nájera C.A., Romero A., Felice R., Wicker R. // Additive Manufacturing. 2023. V. 63. P. 103404. https://doi.org/10.1016/j.addma.2023.103404
  3. Wang W., Paliwal J. // Sens. Instrum. Food Quality. 2007. V. 1. P. 193. https://doi.org/10.1007/s11694-007-9022-0
  4. Chrzanowski K. // Opto-Electron. Rev. 2023. V. 31. № 1. P. e145327. https://doi.org/10.24425/10.24425/opelre.2023.145327
  5. Høgstedt L., Fix A., Wirth M. et al. // Opt. Express. 2016. V. 24. № 5. P. 5152. https://doi.org/10.1364/OE.24.00515
  6. Rogalski A., Kopytko M., Martyniuk P. // Appl. Phys. Rev. 2019. V. 6. P. 021316.
  7. Midwinter J.E. // Appl. Phys. Lett. 1969. V. 14. P. 29. https://doi.org/10.1063/1.1652645
  8. Del Rocio Camacho-Morales M., Rocco D., Xu L. et al. // Adv. Photon. 2021. V. 3. № 3. P. 036002. https://doi.org/10.1117/1.AP.3.3.036002
  9. Chen J.-Y., Tang C., Ma Z.-H. et al. // Opt. Lett. 2020. V. 45. № 13. P. 3389. https://doi.org/10.1364/OL.393445
  10. Асадчиков В.Е., Бедин С.А., Васильев А.Б. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 10. https://doi.org/10.31857/S1028096022030037
  11. Асадчиков В.Е., Бедин С.А., Березкин В.В. и др. // Письма в ЖТФ. 2022. Т. 48. Вып. 6. С. 7. https://doi.org/10.21883/PJTF.2022.06.52203.19084
  12. Armstrong J.A., Bloembergen N., Ducuing J., Pershan P.S. // Phys. Rev. 1962. V. 127. № 6. P. 1918. https://doi.org/10.1103/PhysRev.127.1918
  13. Fejer M.M., Magel G.A., Jundt D.H. et al. // IEEE J. Quantum Electron. 1992. V. 28. № 11. P. 2631. https://doi.org/10.1109/3.161322
  14. Волков В.В., Лаптев Г.Д., Морозов Е.Ю. и др. // Квантовая электроника. 1998. Т. 25. № 11. С. 1046. https://doi.org/10.1070/QE1998v028n11ABEH001377
  15. Кравцов Н.В., Лаптев Г.Д., Наумова И.И. и др. // Квантовая электроника. 2002. Т. 32. № 10. С. 923. https://doi.org/10.1070/QE2002v032n10ABEH002318
  16. Sakoda K., Ohtaka K. // Phys. Rev. B. 1996. V. 54. № 8. P. 5742. https://doi.org/10.1103/PhysRevB.54.5742
  17. Scalora M., Bloemer M.J., Manka A.S. et al. // Phys. Rev. A. 1997. V. 56. № 4. P. 3166. https://doi.org/10.1103/PhysRevA.56.3166
  18. Balakin A.V., Bushuev V.A., Mantsyzov B.I. et al. // Phys. Rev. E. 2001. V. 63. P. 046609. https://doi.org/10.1103/PhysRevE.63.046609
  19. Li J.J., Li Z.Y., Zhang D.Z. // Phys. Rev. E. 2007. V. 75. P. 056606. https://doi.org/10.1103/PhysRevE.75.056606
  20. Plihal M., Maradudin A.A. // Phys. Rev. B. 1991. V. 44. P. 8565. https://doi.org/10.1103/PhysRevB.44.8565
  21. Minaev N.V., Tarkhov M.A., Dudova D.S. et al. // Laser Phys. Lett. 2018. V. 15. № 2. P. 026002. https://doi.org/10.1088/1612-202X/aa8bd1
  22. Shavkuta B.S., Gerasimov M.Y., Minaev N.V. et al. // Laser Phys. Lett. 2018. V. 15. P. 015602. https://doi.org/10.1088/1612-202X/aa963b
  23. Epifanov E.O., Tarkhov M.A., Timofeeva E.R. et al. // Laser Phys. Lett. 2021. V. 18 (3). P. 036201. https://doi.org/10.1088/1612-202X/abdcc1

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

In the print version, the article was published under the DOI: 10.31857/S0023476125040206


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).