Evolution of the magnetic domain structure in iron borate FeBO3 single crystals in external fields, studied by X-ray diffraction and magneto-optical techniques

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An X-ray diffraction technique using a synchrotron radiation source has been developed and implemented to study the evolution processes of magnetic domain structure in external fields. High-quality single crystals of iron borate FeBO3 were chosen as model objects. A series of X-ray and magneto-optical experiments were performed to investigate the evolution of the magnetic domain structure in weak external magnetic fields. It has been established that the movement of domain walls leads to a stepwise broadening of the diffraction reflection curves of FeBO3 crystals. It is demonstrated that X-ray diffraction studies of the magnetic domain structure can be useful for characterizing magnetic materials in which direct observation of domains by magneto-optical and electron-microscopic methods is difficult.

About the authors

N. I. Snegirev

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: niksnegir@yandex.ru
Russian Federation, Moscow, 119333

A. G. Kulikov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: niksnegir@yandex.ru
Russian Federation, Moscow, 119333

I. S. Lyubutin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: niksnegir@yandex.ru
Russian Federation, Moscow, 119333

A. A. Fedorova

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Russian Federation, Moscow

A. S. Fedorov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Russian Federation, Moscow

M. V. Logunov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Russian Federation, Moscow

S. V. Yagupov

Institute of Physics and Technology, Vernadsky Crimean Federal University

Email: niksnegir@yandex.ru
Russian Federation, Simferopol

M. B. Strugatsky

Institute of Physics and Technology, Vernadsky Crimean Federal University

Author for correspondence.
Email: niksnegir@yandex.ru
Russian Federation, Simferopol

References

  1. Weiss P. // J. Phys. Radium. 1907. V. 6. P. 661.
  2. В1осh F. // Z. Phys. 1932. V. 74. P. 295.
  3. Landau L.D., Lifshitz E.M. Course of theoretical physics. Elsevier, 2013. 562 p.
  4. Néel L. // Cahiers de physique. 1944. V. 25. P. 21.
  5. Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 c.
  6. Hubert A., Shafer R. Magnetic domains. The Analysis of Magnetic Microstructures. Springer, 2009. 685 p.
  7. Logunov M.V., Safonov S.S., Fedorov A.S. et al. // Phys. Rev. Appl. 2021. V. 15. P. 064024. https://doi.org/10.1103/PhysRevApplied.15.064024
  8. Snegirev N., Kulikov A., Lyubutin I. et al. // JETP Lett. 2024. V. 119. № 6. P. 464.
  9. Snegirev N., Kulikov A., Lyubutin I.S. et al. // Cryst. Growth Des. 2023. V. 23. P. 5883. https://doi.org/10.1134/S0021364024600484
  10. Lyubutin I.S., Snegirev N.I., Chuev M.A. et al. // J. Alloys Compd. 2022. V. 906. P. 164348. https://doi.org/10.1016/j.jallcom.2022.164348
  11. Snegirev N., Lyubutin I., Kulikov A. et al. // J. Alloys Compd. 2022. V. 889. P. 161702. https://doi.org/10.1016/j.jallcom.2021.161702
  12. Seavey M.H. // Solid State Commun. 1972. V. 10. P. 219. https://doi.org/10.1016/0038-1098(72)90385-7
  13. Joubert J.C., Shirk T., White W.B., Roy R. // Mater. Res. Bull. 1968. V. 3. P. 671. https://doi.org/10.1016/0025-5408(68)90116-5
  14. Pernet M., Elmale D., Joubert J.C. // Solid State Commun. 1970. V. 8. P. 1583.
  15. Дорошев В.Д., Kовтун Н.М., Лукин С.Н. и др. // Письма в ЖЭТФ. 1979. Т. 29. № 5. С. 286.
  16. Nemec P., Fiebig M., Kampfrath T., Kimel A.V. // Nature Phys. 2019. V. 14. P. 229. https://doi.org/10.48550/arXiv.1705.10600
  17. Xionga D., Jianga Y., Shi K. et al. // Fundamental Res. 2022. V. 2. P. 522. https://doi.org/10.1016/j.fmre.2022.03.016
  18. Smirnova E.S., Snegirev N.I., Lyubutin I.S. et al. // Acta Cryst. B. 2020. V. 76. № 6. P. 1100. https://doi.org/10.1107/S2052520620014171
  19. Yagupov S., Strugatsky M., Seleznyova K. et al. // Cryst. Growth Des. 2018. V. 18. P. 7435. https://doi.org/10.1021/acs.cgd.8b01128
  20. Bowen D.K., Tanner B.K. High resolution X-ray diffractometry and topography Title. London: CRC press, 1998. 251 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

In the print version, the article was published under the DOI: 10.31857/S0023476125040134


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).