X-ray diffraction tomography: image filtering by singular value decomposition and 1D smoothing Whittaker-Eilers methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Digital processing of the 2D noisy X-ray diffraction images (2D-XDI) of a single point defect in Si(111) crystal, registered at the level of dispersion of statistical Gaussian noise of the detector using filtering methods such as singular value decomposition and 1D-line-by-line smoothing of test 2D-XDIs, is carried out. The efficiency of digital filtering of 2D-XDI is evaluated and analyzed by means of control parameter FOM (figure-of-merit) value of reconstruction of the displacement field function of a point defect of Coulomb type fh(r–r0), (h – diffraction vector, r0 – radius-vector of the defect position in the sample). It is shown that the filtering technique using the singular value decomposition of 2D-XDI works significantly better than the 1D linear-by-line smoothing method of 2D-XDI, which, apparently, in relation to our problem requires further research on its improvement.

About the authors

F. N. Chukhovskii

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: f_chukhov@yahoo.ca
Russian Federation, Moscow, 119333

P. V. Konarev

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: f_chukhov@yahoo.ca
Russian Federation, Moscow, 119333

V. V. Volkov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Author for correspondence.
Email: f_chukhov@yahoo.ca
Russian Federation, Moscow, 119333

References

  1. Chapman H.N. // Ultramicroscopy. 1996. V. 66. P. 153. https://doi.org/10.1016/S0304-3991(96)00084-8
  2. Rodenburg J.M., Hurst A.C., Cullis A.G. et al. // Phys. Rev. Lett. 2007. V. 98. P. 034801. https://doi.org/10.1103/PhysRevLett.98.034801
  3. Chapman H.N., Nugent K.A. // Nature Photonics. 2010. V. 4. P. 833. https://doi.org/10.1038/nphoton.2010.240
  4. Chapman H.N. // Nature. 2010. V. 467. P. 409. https://doi.org/10.1038/467409a
  5. Danilewsky A.N., Wittge J., Croell A. et al. // J. Cryst. Growth. 2011. V. 318. P. 1157. https://doi.org/10.1016/j.jcrysgro.2010.10.199
  6. Hänschke D., Danilewsky A., Helfen L. et al. // Phys. Rev. Lett. 2017. V. 119. P. 215504. https://doi.org/10.1103/PhysRevLett.119.215504
  7. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://doi.org/10.1107/S160057671801419X
  8. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 163. https://doi.org/10.1107/S2053273320000145
  9. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2023. V. 13. P. 561. https://doi.org/10.3390/cryst13040561
  10. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2024. V. 14. P. 29. https://doi.org/10.3390/cryst14010029
  11. Чуховский Ф.Н., Волков В.В., Конарев П.В. Способ сбора и обработки данных рентгеновской дифракционной микротомографии. Патент. RU 2 824 297 C1 Рос. Фед. № 2008121372/04.
  12. Hendriksen A.A., Bührer M., Leone L. et al. // Sci. Rep. 2021. V. 11. P. 11895. https://doi.org/10.1038/s41598-021-91084-8
  13. Hamming R.W. Numerical Methods for Scientists and Engineers. New York: McGraw-Hill, 1961. 721 p.
  14. Бондаренко В.И., Рехвиашвили C.Ш., Чуховский Ф.Н. // Кристаллография. 2024. Т. 69. С. 755. https://doi.org/10.31857/S0023476124050012
  15. Eilers P.H.C. // Anal. Chem. 2003. V. 75. P. 3631. https://doi.org/10.1021/ac034173t
  16. Jha S.K., Yadava R.D.S. // IEEE Sensors J. 2011. V. 11. P. 35. https://doi.org/10.1109/JSEN.2010.2049351
  17. Golub G.H., Van Loan C.F. Matrix Computations. 4th Ed. Baltimore: Johns Hopkins Univ. Press, 2013. 756 p. Ch. 2.
  18. Yang W., Hong J.-Y., Kim J.-Y. et al. // Sensors. 2020. V. 20. P. 3063. https://doi.org/10.3390/s20113063
  19. Durbin J., Watson G.S. // Biometrika. 1971. V. 58. P. 1. https://doi.org/10.2307/2334313
  20. Деянов Р.З., Щедрин Б.М., Бурова Е.М. // Вычислительные методы и программирование. Вып. 39. М.: Изд-во МГУ, 1983. С. 55.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

In the print version, the article was published under the DOI: 10.31857/S0023476125040016


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).