Plasmon polaritons of the TE and TM types in a metal film bordering a superlattice. III. Plasmon polaritons in bilayer superlattices
- 作者: Darinskii A.N.1
-
隶属关系:
- National Research Complex “Kurchatov Institute”
- 期: 卷 70, 编号 3 (2025)
- 页面: 511-519
- 栏目: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://journals.rcsi.science/0023-4761/article/view/293808
- DOI: https://doi.org/10.31857/S0023476125030181
- EDN: https://elibrary.ru/BCMVWX
- ID: 293808
如何引用文章
详细
The paper theoretically investigates TE and TM polarized surface plasmon polaritons in a metal film in contact with a semi-infinite periodic superlattice formed by alternating layers of two materials. It is shown that in a certain case, the frequency dependence of the impedances of such a bilayer superlattice can be of only two types out of three possible types of dependencies. The dispersion curves TE and TM of surface plasmon polaritons in a silver film have been calculated for a number of structures consisting of various combinations of bilayer superlattices containing layers of quartz and titanium oxide. The calculation results are compared with the conclusions of the general theory on the maximum number of surface plasmon polaritons. The effect of the absorption of electromagnetic waves in the film on the characteristics of surface plasmon polaritons is analyzed.
全文:

作者简介
A. Darinskii
National Research Complex “Kurchatov Institute”
编辑信件的主要联系方式.
Email: Alexandre_Dar@mail.ru
Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics
俄罗斯联邦, Leninskii prospekt 59, Moscow 119333参考
- Даринский А.Н. // Кристаллография. 2024. Т. 69. № 6. С. 1018. https://doi.org/10.31857/S0023476124060123
- Даринский А.Н. // Кристаллография. 2024. Т. 69. № 6. С. 1029. https://doi.org/10.31857/S0023476124060136
- Yariv А., Yeh P. Photonics: Optical Electronics in Modern Communications. 6th ed. Oxford University Press, 2007. 850 p.
- Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешетками. М.: Наука, 1989. 288 с.
- Shuvalov A.L., Poncelet O., Golkin S.V. // Proc. R. Soc. A. 2009. V. 465. P. 1489. http://dx.doi.org/ doi: 10.1098/rspa.2008.0457
- Pavlichenko I., Exner A., Lugli P. et al. // J. Intell. Mater. Syst. Struct. 2012. V. 24. P. 2204. https://doi.org/10.1177/1045389X12453970
- Mbakop F.K., Djongyang N., Raïdandi D. // J. Eur. Opt. Soc.-Rapid Publ. 2016. V. 12. P. 1. https://doi.org/10.1186/s41476-016-0026-4
- Saravanan S., Dubey R.S. // Nanosyst.: Phys., Chem., Math. 2019. V. 10. P. 63. https://doi.org/10.17586/2220-8054-2019-10-1-63-69
- Романова В.А., Матюшкин Л.Б., Мошников В.А. // Физика и химия стекла. 2018. Т. 44. С. 11. https://doi.org/10.1134/S1087659618010108
- Mbakop F.K., Tom A., Dadjé A. et al. // Chin. J. Phys. 2020. V. 67. P. 124. https://doi.org/10.1016/j.cjph.2020.06.004
- https://refractiveindex.info
- Sarkar S., Gupta V., Kumar M. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 13752. https://doi.org/10.1021/acsami.8b20535
- Lemarchand F. Private communications. 2013.
- Yang H.U., D'Archangel J., Sundheimer M.L. et al. // Phys. Rev. B. 2015. V. 91. P. 235137. https://doi.org/10.1103/PhysRevB.91.235137
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. 2-е изд., испр. М.: Наука, 1982. 621 с.
补充文件
