Synthesis, crystal structure and spectroscopic study of lead monochloroacetate, Pb(ClCH2COO)2
- Authors: Ivanov S.A.1,2, Banaru A.M.1,2, Kireev V.E.2, Charkin D.O.1,2, Kompanchenko A.A.2, Gosteva A.N.2,3, Aksenov S.M.2
-
Affiliations:
- Lomonosov Moscow State University
- FRC Kola Science Centre RAS
- Federal State Autonomous Educational Institution of Higher Education “Murmansk Arctic University”
- Issue: Vol 70, No 3 (2025)
- Pages: 477-485
- Section: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0023-4761/article/view/293801
- DOI: https://doi.org/10.31857/S0023476125030148
- EDN: https://elibrary.ru/BCSGSV
- ID: 293801
Cite item
Abstract
Crystals of lead monochloroacetate, Pb(ClCH2COO)2, were obtained in the reaction of lead carbonate and aqueous chloroacetic acid. The compound crystallizes in the monoclinic symmetry (space group P21/c) with the unit cell parameters: a = 10.8346(6), b = 7.7239(4), c = 10.1484(5) Å, β = 106.542(5)°. Like other medium- and long-chain lead carboxylates, the crystal structure of lead monochloroacetate is layered. Lead atoms are located in distorted seven-vertex PbO7-polyhedra which share edges and form layers. Features of the crystal structures of lead salts of carboxylic acids with unbranched hydrocarbon radicals are discussed. In particular, salts of lead(II) n-alkyl carboxylates with the general formula Pb(CnH2n+1COO)2, despite belonging to different symmetry and space groups (monoclinic P21/m for n = 2 and 3, triclinic P for n = 4–9, and monoclinic P21/c for Pb(ClCH2COO)2), are characterized by the same arrangement of molecules, so they can be considered structurally related.
Full Text

About the authors
S. A. Ivanov
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University; Laboratory of Arctic Mineralogy and Material Sciences, FRC Kola Science Centre RAS
Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209A. M. Banaru
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University; Laboratory of Arctic Mineralogy and Material Sciences, FRC Kola Science Centre RAS
Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209V. E. Kireev
FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Laboratory of Arctic Mineralogy and Material Sciences
Russian Federation, 14 Fersman str., Apatity 184209D. O. Charkin
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University; Laboratory of Arctic Mineralogy and Material Sciences, FRC Kola Science Centre RAS
Russian Federation, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209A. A. Kompanchenko
FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Geological Institute
Russian Federation, 14 Fersman str., Apatity 184209A. N. Gosteva
FRC Kola Science Centre RAS; Federal State Autonomous Educational Institution of Higher Education “Murmansk Arctic University”
Email: aks.crys@gmail.com
I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, FRC Kola Science Centre RAS
Russian Federation, 26a, Akademgorodok, Apatity 184209; 15 Kapitana Egorova str., Murmansk 183038S. M. Aksenov
FRC Kola Science Centre RAS
Author for correspondence.
Email: aks.crys@gmail.com
Laboratory of Arctic Mineralogy and Material Sciences; Geological Institute
Russian Federation, 14 Fersman str., Apatity 184209References
- Krivovichev S.V., Mentre O., Siidra O.I. et al. // Chem. Rev. 2013. V. 113. № 8. P. 6459. https://doi.org/10.1021/cr3004696
- Persson I., Lyczko K., Lundberg D. et al. // Inorg. Chem. 2011. V. 50. № 3. P. 1058. https://doi.org/10.1021/ic1017714
- Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Krist. 2008. V. 223. № 1–2. P. 114. https://doi.org/10.1524/zkri.2008.0009
- Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. № 3. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
- Fiuza-Maneiro N., Sun K., López-Fernández I. et al. // ACS Energy Lett. 2023. V. 8. № 2. P. 1152. https://doi.org/10.1021/acsenergylett.2c02363
- Zhao Y., Zhu K. // Chem. Soc. Rev. 2016. V. 45. № 3. P. 655. https://doi.org/10.1039/C4CS00458B
- Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9019. https://doi.org/10.1021/ic401215x
- Tangboriboon N., Pakdeewanishsukho K., Jamieson A. et al. // Mater. Chem. Phys. 2006. V. 98. № 1. P. 138. https://doi.org/10.1016/j.matchemphys.2005.09.034
- Jachuła J., Kołodyńska D., Hubicki Z. // Can. J. Chem. 2010. V. 88. № 6. P. 540. https://doi.org/10.1139/V10-027
- Shahid M., Pinelli E., Dumat C. // J. Hazard. Mater. 2012. V. 219–220. P. 1. https://doi.org/10.1016/j.jhazmat.2012.01.060
- Hu M.-L., Morsali A., Aboutorabi L. // Coord. Chem. Rev. 2011. V. 255. № 23–24. P. 2821. https://doi.org/10.1016/j.ccr.2011.05.019
- Martínez-Casado F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // J. Mater. Chem. C. 2014. V. 2. № 44. P. 9489. https://doi.org/10.1039/C4TC01645A
- Martínez-Casado. F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 26. P. 17009. https://doi.org/10.1039/C7CP02351K
- Warrier A.V.R., Narayanan P.S. // Spectrochim. Acta. A. 1967. V. 23. № 4. P. 1061. https://doi.org/10.1016/0584-8539(67)80029-1
- Filipović I., Bujak A., Vukičević V. // Croat. Chem. Acta. 1970. V. 42. № 3. P. 493.
- Oxford Diffraction. CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK. 2009.
- Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. № 4. P. 786. https://doi.org/10.1107/S0021889807029238
- Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. № 5. P. 345. https://doi.org/ 10.1515/zkri-2014-1737
- Petříček V., Palatinus L., Plášil J., Dušek M. // Z. Krist. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Spinner E. // J. Chem. Soc. 1964. P. 4217. https://doi.org/10.1039/jr9640004217
- Bernard M.-C., Costa V., Joiret S. // e-Preservation Sci. 2009. V. 6. P. 101.
- Teixeira-Dias J.J.C., Fausto R. // Pure Appl. Chem. 1989. V. 61. № 5. P. 959. https://doi.org/10.1351/pac198961050959
- Katon J.E., Sinha D. // Spectrochim. Acta. A. 1977. V. 33. № 1. P. 45. https://doi.org/10.1016/0584-8539(77)80146-3
- Jassem N.A., El-Bermani M.F. // Spectrochim. Acta. A. 2010. V. 76. № 2. P. 213. https://doi.org/10.1016/j.saa.2010.03.022
- Hermans J.J., Keune K., van Loon A., Iedema P.D. // J. Anal. At. Spectrom. 2015. V. 30. № 7. P. 1600. https://doi.org/10.1039/C5JA00120J
- Shi Q., Cao R., Hong M.C. et al. // Transit. Met. Chem. 2001. V. 26. P. 657. https://doi.org/10.1023/A:1012008427788
- Mido Y., Kawashita T., Suzuki K. et al. // J. Mol. Struct. 1987. V. 162. № 3–4. P. 169. https://doi.org/10.1016/0022-2860(87)87050-3
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Y., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250. https://doi.org/10.1080/27660400.2022.2088041
- Alexandrov E.V., Blatov V.A., Kochetkov A.V., Proserpio D.M. // CrystEngComm. 2011. V. 13. № 12. P. 3947. https://doi.org/10.1039/c0ce00636j
- Martínez-Casado F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // Inorg. Chem. 2016. V. 55. № 17. P. 8576. https://doi.org/10.1021/acs.inorgchem.6b01116
- O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. № 12. P. 1782. https://doi.org/10.1021/ar800124u
- Delgado-Friedrichs O., O’Keeffe M. // Acta Cryst. A. 2003. V. 59. № 4. P. 351. https://doi.org/10.1107/S0108767303012017
- Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. № 3. P. 654. https://doi.org/10.1002/anie.201304374
- Krivovichev S.V. // CrystEngComm. 2024. V. 26. № 9. P. 1245. https://doi.org/10.1039/D3CE01230A
Supplementary files
