New cobalt and nickel sulfates templated with N,Nʹ-dimethyletethylenediammonium cation: synthesis, crystal structures and topological features
- 作者: Charkin D.O.1,2, Kireev V.E.2, Somov N.V.3, Dmitriev D.N.1,2, Banaru A.M.1,2, Aksenov S.M.2
-
隶属关系:
- Lomonosov Moscow State University
- FRC Kola Science Centre RAS
- N. I. Lobachevsky State University of Nizhny Novgorod
- 期: 卷 70, 编号 3 (2025)
- 页面: 465-476
- 栏目: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0023-4761/article/view/293797
- DOI: https://doi.org/10.31857/S0023476125030136
- EDN: https://elibrary.ru/BCXZUA
- ID: 293797
如何引用文章
详细
Crystals of new double sulfates (dmedaH2)[Co(H2O)6](SO4)2 (1) and (dmedaH2)[Ni(H2O)4(SO4)2] (2), as well as (dmedaH2)2(SO4)2⋅3H2O (3), where dmeda is N,Nʹ-dimethylethylenediamine, were obtained by isothermal evaporation. The compounds crystallize in the triclinic symmetry, space group P, while compound 3 is characterized by the orthorhombic symmetry with the space group P212121. The crystal structure of 1 contains isolated octahedral cations [Co(H2O)6]2+ and SO42– tetrahedra, while the crystal structure of 2 contains complex anions trans-[Ni(H2O)4(SO4)2]2–. Structures of 1 and 2 are compared with the structures of double cobalt and nickel sulfates with ethylenediammonium, where the opposite case is observed. The formation of both aqua- and aquasulfate complexes is quite typical for cations of transition metals of the 3d series. While for double sulfates of transition metals with inorganic cations the hydration number depends to a greater extent on the synthesis temperature and the ionic radius of the monovalent metal, for double sulfates with organic cations the picture is more complex. The crystal structure of compound 3 can also be considered as pseudolayered, with the cationic layer formed only by the organic component, while the anionic layer also includes water molecules. The anionic layer contains cavities, the volume of which allows us to assume that under certain conditions they can be occupied by water molecules, which would correspond to the composition (dmedaH2)(SO4)⋅2H2O. Topological analysis of the obtained compounds showed that metal complexes with ethylenediammonium demonstrate a relatively high structural complexity of H-bonds with a lower complexity of structural units compared to N,N'-dimethylethylenediammonium.
全文:

作者简介
D. Charkin
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University
俄罗斯联邦, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209V. Kireev
FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
俄罗斯联邦, 14 Fersman str., Apatity 184209
N. Somov
N. I. Lobachevsky State University of Nizhny Novgorod
Email: aks.crys@gmail.com
俄罗斯联邦, Nizhny Novgorod
D. Dmitriev
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University
俄罗斯联邦, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209A. Banaru
Lomonosov Moscow State University; FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University
俄罗斯联邦, 1-3 Leninskie Gory, Moscow 119991; 14 Fersman str., Apatity 184209S. Aksenov
FRC Kola Science Centre RAS
编辑信件的主要联系方式.
Email: aks.crys@gmail.com
俄罗斯联邦, 14 Fersman str., Apatity 184209
参考
- Hawthorne F.C., Krivovichev S.V., Burns P.C. // Rev. Mineral. Geochem. 2000. V. 40. P. 1. https://doi.org/10.2138/rmg.2000.40.1
- Расцветаева Р.К., Пущаровский Д.Ю. // ВИНИТИ Итоги науки и техники. Сер. Кристаллохимия. 1989. T. 23. C. 1.
- Bosi F., Belardi G., Ballirano P. // Am. Mineral. 2009. V. 94. P. 74. https://doi.org/10.2138/am.2009.2898
- Rousse G., Tarascon J.M. // Chem. Mater. 2014. V. 26. P. 394. https://doi.org/10.1021/cm4022358
- Masquelier C., Croguennec L. // Chem. Rev. 2013. V. 113. P. 6552. https://doi.org/10.1021/cr3001862
- Naïli H., Hajlaoui F., Mhiri T. et al. // Dalton Trans. 2013. V. 42. P. 399. https://doi.org/10.1039/C2DT31300F
- Nkhili N.L., Rekik W., Mhiri T. et al. // Inorg. Chim. Acta. 2014. V. 412. P. 27. https://doi.org/10.1016/j.ica.2013.12.007
- Aksenov S.M., Yamnova N.A., Kabanova N.A. et al. // Crystals. 2021. V. 11. P. 237. https://doi.org/10.3390/cryst11030237
- Hatert F. // Eur. J. Mineral. 2019. V. 31. P. 807. https://doi.org/10.1127/ejm/2019/0031-2874
- Liu H.-K., Liao L.-B., Zhang Y.-Y. et al. // Rare Met. 2021. V. 40. P. 3694. https://doi.org/10.1007/s12598-020-01690-0
- McConnell D. // Am. Mineral. 1937. V. 22. P. 977.
- Pasero M., Kampf A.R., Ferraris C. et al. // Eur. J. Mineral. 2010. V. 22. P. 163. https://doi.org/10.1127/0935-1221/2010/0022-2022
- Deyneko D.V., Titkov V.V., Fedyunin F.D. et al. // Ceram. Int. 2022. V. 48. P. 24012. https://doi.org/10.1016/j.ceramint.2022.05.077
- Norquist A.J., Doran M.B., Thomas P.M., O’Hare D. // Dalton Trans. 2003. P. 1168. https://doi.org/10.1039/b209208e
- Durova E.V., Kuporev I.V., Gurzhiy V.V. // Int. J. Mol. Sci. 2023. V. 24. P. 13020. https://doi.org/10.3390/ijms241613020
- Smith P.A., Aksenov S.M., Jablonski S., Burns P.C. // J. Solid State Chem. 2018. V. 266. P. 286. https://doi.org/10.1016/j.jssc.2018.07.028
- Speer D., Salje E. // Phys. Chem. Miner. 1986. V. 13. P. 17. https://doi.org/10.1007/BF00307309
- McMurdie H.F., Morris M.C., DeGroot J., Swanson H.E. // J. Res. Natl. Bur. Stand. A. 1971. V. 75. P. 435. https://doi.org/10.6028/jres.075A.034
- Majzlan J., Marinova D., Dachs E. // RSC Adv. 2021. V. 11. P. 374. https://doi.org/10.1039/D0RA09501J
- Morales A.C., Cooper N.D., Reisner B.A., DeVore T.C. // J. Therm. Anal. Calorim. 2018. V. 132. P. 1523. https://doi.org/10.1007/s10973-018-7107-0
- Ray G. // Acta Cryst. 1967. V. 22. P. 771. https://doi.org/10.1107/S0365110X67001549
- Smith J., Weinberger P., Werner A. // J. En. Storage. 2024. V. 78. P. 110003. https://doi.org/10.1016/j.est.2023.110003
- Rajagopal R., Ajgaonkar V.R. // Monatsh. Chem. 2002. V. 133. P. 1387. https://doi.org/10.1007/s007060200112
- Rekik W., Naïli H., Bataille T. // J. Coord. Chem. 2015. V. 68. P. 142. https://doi.org/10.1080/00958972.2014.989223
- Yahyaoui S., Rekik W., Naïli H. et al. // J. Solid State Chem. 2007. V. 180. P. 3560. https://doi.org/10.1016/j.jssc.2007.10.019
- Rekik W., Naïli H., Mhiri T., Bataille T. J. // Chem. Cryst. 2007. V. 37. P. 147. https://doi.org/10.1007/s10870-006-9170-9
- Rekik W., Naïli H., Mhiri T., Bataille T. // Mater. Res. Bull. 2008. V. 43. P. 2709. https://doi.org/10.1016/j.materresbull.2007.10.024
- Held P. // Acta Cryst. E. 2014. V. 70. P. 235. https://doi.org/10.1107/S1600536814020704
- Lu J., Schlueter J.A., Geiser U. // J. Solid State Chem. 2006. V. 179. P. 1559. https://doi.org/10.1016/j.jssc.2006.02.006
- Bataille T., Louër D. // J. Mater. Chem. 2002. V. 12. P. 3487. https://doi.org/10.1039/B207212M
- Rekik W., Naïli H., Bataille T. et al. // Inorg. Chim. Acta 2006. V. 359. P. 3954. https://doi.org/10.1016/j.ica.2006.05.030
- Bataille T. // Acta Cryst. C. 2003. V. 59. P. m459. https://doi.org/10.1107/S0108270103021243
- Hajlaoui F., Naïli H., Yahyaoui S. et al. // J. Organomet. Chem. 2012. V. 700. P. 110. https://doi.org/10.1016/j.jorganchem.2011.11.023
- Rekik W., Loulou Nkhili N., Naïli H., Dahaoui S. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 2603. https://doi.org/10.1002/zaac.201400240
- Charkin D.O., Banaru A.M., Ivanov S.A. et al. // Z. Anorg. Allg. Chem. 2023. V. 649. № 24. P. e202300184. https://doi.org/10.1002/zaac.202300184
- Charkin D.O., Banaru A.M., Dmitriev D.N. et al. // Struct. Chem. 2024. V. 35. P. 39. https://doi.org/10.1007/s11224-023-02254-5
- Charkin D.O., Kireev V.E., Dmitriev D.N. et al. // Struct. Chem. 2024. https://doi.org/10.1007/s11224-024-02375-5
- Manomenova V.L., Rudneva E.B., Voloshin A.E. // Russ. Chem. Rev. 2016. V. 85. P. 585. https://doi.org/10.1070/RCR4530
- Oxford Diffraction CrysAlisPro. Oxford Diffraction Ltd Abingdon Oxfordshire UK, 2009
- Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. P. 786. https://doi.org/10.1107/S0021889807029238
- Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Petříček V., Palatinus L., Plášil J., Dušek M. J. // Z. Krist. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Banaru D., Hornfeck W., Aksenov S., Banaru A. // CrystEngComm. 2023. V. 25. P. 2144. https://doi.org/10.1039/D2CE01542K
- Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
- Sabirov D.S., Zimina A.D., Tukhbatullina A.A. // J. Math. Chem. 2024. V. 62. P. 819. https://doi.org/10.1007/s10910-023-01566-5
- Banaru D.A., Aksenov S.M., Banaru A.M., Oganov A.R. // Z. Krist. 2024. V. 239. № 5–6. P. 207. https://doi.org/10.1515/zkri-2024-0062
- Lord E.A., Banaru A.M. // Moscow Univ. Chem. Bull. 2012. V. 67. P. 50. https://doi.org/10.3103/S0027131412020034
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
- Montgomery H., Morosin B., Natt J.J. et al. // Acta Cryst. 1967. V. 22. P. 775. https://doi.org/10.1107/S0365110X67001550
- Elerman Y. // Acta Cryst. C. 1988. V. 44. P. 599. https://doi.org/10.1107/S0108270187012447
- Gaye P.A., Sarr A.D., Gaye M. et al. // Acta Cryst. E. 2011. V. 67. P. m1046. https://doi.org/10.1107/S1600536811025682
- Bujak M., Frank W. // Z. Krist. 2014. V. 229. P. 147. https://doi.org/110.1515/ncrs-2014-0083
- Stoilova D., Wildner M. // J. Mol. Struct. 2004. V. 706. P. 57. https://doi.org/10.1016/j.molstruc.2004.01.070
- Healy P., Patrick J., White A. // Aust. J. Chem. 1984. V. 37. P. 1105. https://doi.org/10.1071/CH9841105
- Rujiwatra A., Limtrakul J. // Acta Cryst. E. 2005. V. 61. P. m1403. https://doi.org/10.1107/S1600536805019604
- Ben Ghozlen M.H., Daoud A., Paulus H., Pabst I. // Z. Krist. 1994. V. 209. P. 383. https://doi.org/10.1524/zkri.1994.209.4.383
- Chaabouni S., Kamoun S., Daoud A., Jouini T. // Acta Cryst. C. 1996. V. 52. P. 505. https://doi.org/10.1107/S0108270195011048
- Held P. // Acta Cryst. E. 2003. V. 59. P. m197. https://doi.org/10.1107/S1600536803004628
- Rekik W., Naïli H., Mhiri T., Bataille T. // Acta Cryst. E. 2009. V. 65. P. m1404. https://doi.org/10.1107/S1600536809041981
- Rekik W., Naïli H., Mhiri T., Bataille T. // Acta Cryst. E. 2011. V. 67. P. m1176. https://doi.org/10.1107/S1600536811030005
- Kim C.-H., Park C.-J., Lee S.-G. // Anal. Sci. Technol. 2006. V. 19. P. 309.
- Rekik W., Naïli H., Mhiri T., Bataille T. // Solid State Sci. 2009. V. 11. P. 614. https://doi.org/10.1016/j.solidstatesciences.2008.11.002
- O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P. 1782. https://doi.org/10.1021/ar800124u
- Banaru A.M., Banaru D.A., Aksenov S.M. // J. Struct. Chem. 2022. V. 63. P. 260. https://doi.org/10.1134/S002247662202007X
补充文件
