Synthesis and crystal structures of (C4H12N2)[Mn(HSeO3)2Cl2] и [(C4N12N2)Br]2[Mn(HSeO3)2Br2]: new representatives of the modular family of “layered hydroselenites”
- 作者: Kireev V.E.1, Dmitriev D.N.1,2, Charkin D.O.1,2, Aksenov S.M.1
-
隶属关系:
- FRC Kola Science Centre RAS
- Lomonosov Moscow State University
- 期: 卷 70, 编号 3 (2025)
- 页面: 457-464
- 栏目: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0023-4761/article/view/293792
- DOI: https://doi.org/10.31857/S0023476125030121
- EDN: https://elibrary.ru/BCZYEW
- ID: 293792
如何引用文章
详细
Single crystals of two new complex hydroselenites with organic cations, (C4H12N2)[Mn(HSeO3)2Cl2] (1) and [(C4N12N2)Br]2[Mn(HSeO3)2Br2] (2), were obtained as the products of the reaction of piperazine, selenious acid and manganese halide in an aqueous medium. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction analysis and are characterized by monoclinic symmetry (1: P21/c, a = 9.7557(7), b = 7.3930(5), c = 9.7660(6) Å, β = 116.839(7)°; 2: P21/c, a = 14.4093(3), b = 7.3822(1), c = 10.3051(3) Å, β = 101.553(2)°). The crystal structures of both compounds are constructed by alternating layers of the composition [Mn(HSeO3)2X2]2– (X = Cl, Br) and layers formed by piperazinium cations. Compound 1 is a structural analogue of the previously described compound (C4H12N2)[Cd(HSeO3)2Cl2], while the crystal structure of compound 2 belongs to a new structural type and contains layers including both piperazinium cations and bromine anions. The crystal structure of 2 is characterized by a modular structure.
全文:

作者简介
V. Kireev
FRC Kola Science Centre RAS
Email: aks.crys@gmail.com
俄罗斯联邦, 14 Fersman str., Apatity 184209
D. Dmitriev
FRC Kola Science Centre RAS; Lomonosov Moscow State University
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University
俄罗斯联邦, 14 Fersman str., Apatity 184209; 1-3 Leninskie Gory, Moscow 119991D. Charkin
FRC Kola Science Centre RAS; Lomonosov Moscow State University
Email: aks.crys@gmail.com
Faculty of Chemistry, Lomonosov Moscow State University
俄罗斯联邦, 14 Fersman str., Apatity 184209; 1-3 Leninskie Gory, Moscow 119991S. Aksenov
FRC Kola Science Centre RAS
编辑信件的主要联系方式.
Email: aks.crys@gmail.com
俄罗斯联邦, 14 Fersman str., Apatity 184209
参考
- Ok K.M. // Acc. Chem. Res. 2016. V. 49. P. 2774. https://doi.org/10.1021/acs.accounts.6b00452
- Lin H., Li Y.-Y., Li M.-Y. et al. // J. Mater. Chem. C. 2019. V. 7. P. 4638. https://doi.org/10.1039/C9TC00647H
- Handy J.V., Zaheer W., Rothfuss A.R.M. et al. // Chem. Mater. 2022. V. 34. P. 1439. https://doi.org/10.1021/acs.chemmater.1c03762
- Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- Yan M., Xue H.-G., Guo S.-P. // Cryst. Growth Des. 2021. V. 21. P. 698. https://doi.org/10.1021/acs.cgd.0c01407
- Christy A.G., Mills S.J., Kampf A.R. // Mineral. Mag. 2016. V. 80. P. 415. https://doi.org/10.1180/minmag.2016.080.093
- Kovrugin V.M., Colmont M., Siidra O.I. et al. // J. Cryst. Growth. 2017. V. 457. P. 307. https://doi.org/10.1016/j.jcrysgro.2016.01.006
- Millet P., Johnsson M., Pashchenko V. et al. // Solid State Ionics. 2001. V. 141–142. P. 559. https://doi.org/10.1016/S0167-2738(01)00765-2
- Kim S.-H., Yeon J., Sefat A.S. et al. // Chem. Mater. 2010. V. 22. P. 6665. https://doi.org/10.1021/cm102659w
- Charkin D.O., Grishaev V.Y., Omelchenko T.A. et al. // Solid State Sci. 2023. V. 137. P. 107116. https://doi.org/10.1016/j.solidstatesciences.2023.107116
- Aksenov S.M., Charkin D.O., Banaru A.M. et al. // J. Struct. Chem. 2023. V. 64. P. 1797. https://doi.org/10.1134/S0022476623100013
- Reutova O.V., Belokoneva E.L., Volkov A.S., Dimitrova O.V. // Crystallograpy Reports. 2024. V. 69 P. 485. https://doi.org/10.1134/S1063774524601382
- Reutova O.V., Belokoneva E.L., Volkov A.S., Dimitrova O.V. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777
- Charkin D.O., Dolgikh V.A., Omelchenko T.A. et al. // Symmetry. 2022. V. 14. P. 2087. https://doi.org/10.3390/sym14102087
- Murtazoev A.F., Berdonosov P.S., Aksenov S.M. et al. // Acta Cryst. B. 2023. V. 79. Р. 176. https://doi.org/10.1107/S2052520622012227
- Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2021. V. 13. P. 1477. https://doi.org/10.3390/sym13081477
- Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
- Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
- Charkin D.O., Nazarchuk E.V., Dmitriev D.N. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14202. https://doi.org/10.3390/ijms241814202
- May M., Debrus S., Venturini J. et al. // J. Mol. Struct. 1997. V. 436–437. P. 327. https://doi.org/10.1016/S0022-2860(97)00113-0
- Yankova R., Yotova T. // Chem. Data Collect. 2022. V. 42. P. 100947. https://doi.org/10.1016/j.cdc.2022.100947
- Effenberger H. // Z. Krist. 1985. V. 173. P. 267. https://doi.org/10.1524/zkri.1985.173.3-4.267
- Lafront A.M., Trombe J.C. // Inorg. Chim. Acta. 1995. V. 234. P. 19. https://doi.org/10.1016/0020-1693(95)04500-9
- Lafront A.-M., Trombe J.-C., Bonvoisin J. // Inorg. Chim. Acta. 1995. V. 238. P. 15. https://doi.org/10.1016/0020-1693(95)04659-W
- Trombe J.-C., Lafront A.-M., Bonvoisin J. // Inorg. Chim. Acta. 1997. V. 262. P. 47. https://doi.org/10.1016/S0020-1693(97)05501-1
- Spirovski F., Wagener M., Stefov V., Engelen B. // Z. Krist. 2007. V. 222. P. 91. https://doi.org/10.1524/ncrs.2007.0037
- Pasha I., Choudhury A., Rao C.N.R. // Solid State Sci. 2003. V. 5. P. 257. https://doi.org/10.1016/S1293-2558(02)00100-0
- Kovrugin V.M., Krivovichev S.V., Mentré O., Colmont M. // Z. Krist. 2015. V. 230. P. 573. https://doi.org/10.1515/zkri-2015-1849
- Charkin D.O., Markovski M.R., Siidra O.I et al. // Z. Krist. 2019. V. 234. P. 739. https://doi.org/10.1515/zkri-2019-0042
- Markovski M.R., Charkin D.O., Siidra O.I., Nekrasova D.O. // Z. Krist. 2019. V. 234. P. 749. https://doi.org/10.1515/zkri-2019-0036
- Grishaev V.Y., Siidra O.I., Markovski M.R. et al. // Z. Krist. 2023. V. 238 P. 177. https://doi.org/10.1515/zkri-2023-0004
- Wagener M. “Synthese Charakterisierung und struktur-chemische Aspekte von Kupfer- und Silberchalkogenohalogeniden sowie von Halogeno- und Oxochalkogenaten(IV)”. Uinversität Siegen 2005. https://nbn-resolving.org/urn:nbn:de:hbz:467-1092
- Johnston M.G., Harrison W.T.A. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 2487. https://doi.org/10.1002/1521-3749(200012)626:12<2487::AID-ZAAC2487>3.0.CO,2-E.
- Feng M.-L., Prosvirin A.V., Mao J.-G., Dunbar K.R. // Chem. Eur. J. 2006. V. 12. P. 8312. https://doi.org/10.1002/chem.200600031
- Johnston M.G., Harrison W.T.A. // Acta Cryst. E. 2003. V. 59. P. i62. https://doi.org/10.1107/S1600536803006378
- Charkin D.O., Banaru A.M., Dmitriev D.N. et al. // Struct. Chem. 2024. V. 35. P. 39. https://doi.org/10.1007/s11224-023-02254-5
- Charkin D.O., Kireev V.E., Dmitriev D.N. et al. // Struct. Chem. 2024. P. 1. https://doi.org/10.1007/s11224-024-02375-5
- Oxford Diffraction CrysAlisPro. Oxford Diffraction Ltd Abingdon Oxfordshire UK, 2009.
- Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. P. 786. https://doi.org/10.1107/S0021889807029238
- Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Petříček V., Palatinus L., Plášil J., Dušek M. // Z. Krist. 2023. V. 238. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Choudhury R.R., Chitra R., Kesari S. et al. // Mol. Phys. 2022. V. 120. P. e2003457. https://doi.org/10.1080/00268976.2021.2003457
- Chukanov N.V., Rastsvetaeva R.K., Zubkova N.V. et al. // J. Raman Spectrosc. 2024. V. 55. № 5. P. 581. https://doi.org/10.1002/jrs.6656
- Chukanov N.V., Vigasina M.F., Rastsvetaeva R.K. et al. // J. Raman Spectrosc. 2022. V. 53. P. 1188. https://doi.org/10.1002/jrs.6343
- Aksenov S.M., Chukanov N.V., Tarasov V.P. et al. // J. Phys. Chem. Solids. 2024. V. 189. P. 111944. https://doi.org/10.1016/j.jpcs.2024.111944
- Yamnova N.A., Aksenov S.M., Borovikova E.Y. et al. // Crystallography Reports. 2019. V. 64. P. 228. https://doi.org/10.1134/S1063774519020342
- Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2016. V. 72. P. 133. https://doi.org/10.1107/S2052520615023069
- Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2014. V. 70. P. 218. https://doi.org/10.1107/S2052520613029892
- Selezneva E.V., Makarova I.P., Malyshkina I.A. et al. // Acta Cryst. B. 2017. V. 73. P. 1105. https://doi.org/10.1107/S2052520617012847
- Makarova I.P., Isakova N.N., Kalyukanov A.I. et al. // Acta Cryst. B. 2024. V. 80. P. 201. https://doi.org/10.1107/S2052520624003470
- Ferraris G., Makovicky E., Merlino S. Crystallography of Modular Materials. Oxford: New York: Oxford University Press, 2008.
- Jones J.T.A., Hasell T., Wu X. et al. // Nature. 2011. V. 474. P. 367. https://doi.org/10.1038/nature10125
- Friščić T., MacGillivray L.R. // Croat. Chem. Acta. 2006. V. 79. P. 327.
- Qian X., Gu X., Yang R. // Nano Energy. 2017. V. 41. P. 394. https://doi.org/10.1016/j.nanoen.2017.09.047
- Aubrey M.L., Saldivar Valdes A., Filip M.R. et al. // Nature. 2021. V. 597. P. 355. https://doi.org/10.1038/s41586-021-03810-x
- Yu S., Liu P., Xiao S. // J. Mater. Sci. 2021. V. 56. P. 11656. https://doi.org/10.1007/s10853-021-06038-2
- Marchenko E.I., Korolev V.V., Mitrofanov A. et al. // Chem. Mater. 2021. V. 33. P. 1213. https://doi.org/10.1021/acs.chemmater.0c03935
- Marchenko E.I., Kobeleva E.A., Eremin N.N. et al. // Mendeleev Commun. 2024. V. 34. P. 650. https://doi.org/10.1016/j.mencom.2024.09.008
- Chukanov N.V., Jonsson E., Aksenov S.M. et al. // Phys. Chem. Miner. 2017. V. 44. P. 685. https://doi.org/10.1007/s00269-017-0893-2
补充文件
