A new type of copper-oxide cluster in the crystal structure of NaCu12(Si2O7)4Cl, a new representative of the alkali copper disilicate family

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new compound NaCu12(Si2O7)4Cl was synthesized by chemical deposition from gases. Using X-ray diffraction analysis, its crystal structure was established as containing 0-dimensional copper-oxide clusters Cu12O24 of a new type, which can be described as a truncated tetragonal bipyramid built from CuO4 square groups connected by sharing common edges and vertices. The complexes are combined through the Si2O7 disilicate groups into a three-dimensional electroneutral framework [[Cu12(Si2O7)4]0, built on the principle of the bcc grid (body-centered cubic lattice). In the cavities of the framework disordered Na+ and Cl ions are located. The structure of the 12-nucleated copper-oxide clusters is similar to those of the CunO2n polyoxocuprates found in various minerals and inorganic compounds.

全文:

受限制的访问

作者简介

I. Kornyakov

Kola Science Centre, Russian Academy of Sciences; St. Petersburg State University

Email: s.krivovichev@ksc.ru

Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences; Institute of Earth Sciences, St. Petersburg State University

俄罗斯联邦, Apatity; St. Petersburg

S. Krivovichev

Kola Science Centre, Russian Academy of Sciences; St. Petersburg State University

编辑信件的主要联系方式.
Email: s.krivovichev@ksc.ru

Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences; Institute of Earth Sciences, St. Petersburg State University

俄罗斯联邦, Apatity; St. Petersburg

参考

  1. Shores M.P., Nytko E.A., Bartlett B.M. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 13462. https://doi.org/10.1021/ja053891p
  2. Janson O., Tsirlin A.A., Schmitt M. et al. // Phys. Rev. B. 2010. V. 82. P. 014424. https://doi.org/10.1103/PhysRevB.82.014424
  3. Botana A.S., Zheng H., Lapidus S.H. et al. // Phys. Rev. B. 2018. V. 98. P. 054421. https://doi.org/10.1103/PhysRevB.98.054421
  4. Luo M., Li Z.-M., Qui J.-J. et al. // Res. Chem. Intermed. 2014. V. 40. P. 2895. https://doi.org/10.1007/s11164-013-1136-x
  5. Smurova L.A., Sorokina O.N., Kovarskii A.L. // Pet. Chem. 2017. V. 57. P. 1115. https://doi.org/10.1134/S0965544117100152
  6. Elakkiya V., Agarwal Y., Sumathi S. // Solid State Sci. 2018. V. 82. P. 92. https://doi.org/10.1016/j.solidstatesciences.2018.06.008
  7. Deng Z., Wang Z., Zhang P. et al. // Enzyme Microb. Technol. 2019. V. 126. P. 62. https://doi.org/10.1016/j.enzmictec.2019.03.007
  8. Wang P., Yuan Y., Xu K. et al. // Bioact. Mater. 2021. V. 6. P. 916. https://doi.org/10.1016/j.bioactmat.2020.09.017
  9. Корняков И.В. Синтез и кристаллохимия новых минералоподобных соединений двухвалентной меди. Дис. … канд. геол.-минерал. наук. СПб.: СПбГУ, 2021.
  10. Kornyakov I.V., Shilovskikh V.V., Bocharov V.N. et al. // Inorg. Chem. Commun. 2023. V. 157. P. 111435. https://doi.org/10.1016/j.inoche.2023.111435
  11. Rigaku Oxford Diffraction, CrysAlisPro Software System, version 42.102a. Rigaku Oxford Diffraction, Yarnton, England, 2023.
  12. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  13. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  14. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  15. Gagné O.C., Hawthorne F.C. // Acta Cryst. B. 2015. V. 71. P. 562. https://doi.org/10.1107/S2052520615016297
  16. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
  17. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base – ICSD. https://www.ccdc.cam.ac.uk/, http://www.fizkarlsruhe.de
  18. Pennington W.T. // J. Appl. Cryst. 1999. V. 32. P. 1028. https://doi.org/10.1107/S0021889899011486
  19. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  20. Krivovichev S.V., Filatov S.K., Vergasova L.P. // Miner. Petrol. 2012. V. 107. P. 235. https://doi.org/10.1007/s00710-012-0238-2.
  21. Krivovichev S.V. // CrystEngComm. 2024. V. 26. P. 1245.
  22. Shuvalov R.R., Vergasova L.P., Semenova T.F. et al. // Am. Mineral. 2013. V. 98. P. 463.
  23. Möller A. // Z. Anorg. Allg. Chem. 1998. V. 624. P. 1085. https://doi.org/10.1002/(SICI)1521-3749(199807)624:7<1085::AID-ZAAC1085>3.0.CO;2-J
  24. Möller A. // Z. Anorg. Allg. Chem. 1997. 1997. V. 623. P. 1685. https://doi.org/10.1002/zaac.19976231102
  25. Kawamura K., Kawahara A., Iiyama J.T. // Acta Cryst. B. 1978. V. 34. P. 3181. https://doi.org/10.1107/S0567740878010444
  26. dos Santos A.M., Brandão P., Fitch A. et al. // J. Solid State Chem. 2007. V. 180. P. 16. https://doi.org/10.1016/j.jssc.2006.09.012
  27. Krivovichev S.V. // Mineral. Mag. 2013. V. 77. P. 275. https://doi.org/10.1180/minmag.2013.077.3.05
  28. Krivovichev S.V., Krivovichev V.G. // Acta Cryst. A. 2020. V. 76. P. 429. https://doi.org/10.1107/S2053273320004209
  29. Kondinski A., Monakhov K.Y. // Chem. Eur. J. 2017. V. 23. P. 7841. https://doi.org/10.1002/chem.201605876
  30. Krivovichev S.V. // Acta Cryst. B. 2020. V. 76. P. 618.
  31. Effenberger H., Giester G., Krause W. et al. // Am. Mineral. 1998. V. 83. P. 607.
  32. Hawthorne F.C., Groat L.A. // Mineral. Mag. 1986. V. 50. P. 157.
  33. Cooper M.A., Hawthorne F.C. // Can. Mineral. 2000. V. 38. P. 801.
  34. Giuseppetti G., Mazzi F., Tadini C. // N. Jb. Miner. Mh. 1992. B. 1992. S. 113.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Island complex of CuO4 squares (a), the mode of attachment of disilicate groups to the copper-oxygen complex (b) and the crystal structure of NaCu12(Si2O7)4Cl (c). Ellipsoids of thermal displacements of atoms are shown at the 50% probability level.

下载 (291KB)
3. Fig. 2. Difference maps of electron density in cavities inside the copper-oxygen complex (a) and between disilicate groups (b).

下载 (188KB)
4. Fig. 3. Types of polyoxocuprate clusters observed in the structures: a – NaCu12(Si2O7)4Cl, b – chertnerite, c – boleite, d – kumengeite. Oxygen atoms are indicated by balls, copper squares are shown.

下载 (113KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».