Phaseformation in triple systems phosphates Sr–M2+–Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+)
- Authors: Nikiforov I.V.1, Yashina K.N.1, Zhukovskaya E.S.1, Gutnikov S.I.1, Aksenov S.М.2, Deyneko D.V.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Kola Science Centre, Russian Academy of Sciences
- Issue: Vol 70, No 3 (2025)
- Pages: 418-427
- Section: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0023-4761/article/view/293778
- DOI: https://doi.org/10.31857/S0023476125030087
- EDN: https://elibrary.ru/BDMDTO
- ID: 293778
Cite item
Abstract
The phase formation in a system of triple phosphates Sr–M2+–Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+) has been investigated. The crystallization of strontiowhitlockite like structure and isomorphism in a series Sr9–xMnxTb(PO4)7, Sr9–xMgxEu(PO4)7 and Sr9–xZnxEu(PO4)7 (0 ≤ x ≤ 1.0) was described. The species were synthesized through solid-state reaction. It was shown that unlimited series of solid solutions can not be formed. The formation of a strontiowhitlockite-like structure was observed for only stoichiometric compositions Sr8MgEu(PO4)7 and Sr8ZnEu(PO4)7. Crystal chemical aspects of the formation of the strontiowhitlockite structure in the series were analysed. Samples with the strontiowhitlockite structure are crystallized in centrosymmetric space group (sp. gr. R3m) compared to a mother structure, mineral whitlockite, and its synthetic modifications based on calcium phosphate. The conditions for the formation of phosphates with the structure of stronciowhitlockite are indicated. The photoluminescence properties were described, and it was shown that samples exhibit intense emission in the red-orange region, due to the presence of Eu3+ ions. A quenching effect in Sr9–xMnxTb(PO4)7 was detected.
Full Text

About the authors
I. V. Nikiforov
Lomonosov Moscow State University
Author for correspondence.
Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow
K. N. Yashina
Lomonosov Moscow State University
Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow
E. S. Zhukovskaya
Lomonosov Moscow State University
Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow
S. I. Gutnikov
Lomonosov Moscow State University
Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow
S. М. Aksenov
Kola Science Centre, Russian Academy of Sciences
Email: nikiforoviv@my.msu.ru
Geological Institute; Laboratory of Arctic Mineralogy and Material Sciences
Russian Federation, ApatityD. V. Deyneko
Lomonosov Moscow State University; Kola Science Centre, Russian Academy of Sciences
Email: nikiforoviv@my.msu.ru
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences
Russian Federation, Moscow; ApatityReferences
- Zhang Z.-W., Wu Y.-N., Shen X.-H. et al. // Opt. Laser Technol. 2014. V. 62. P. 63. https://doi.org/10.1016/j.optlastec.2014.02.014
- Zhu D., Liao M., Mu Z., Wu F. // J. Electron. Mater. 2018. V. 47. № 8. P. 4840. https://doi.org/10.1007/s11664-018-6380-9
- Deyneko D.V., Aksenov S.M., Nikiforov I.V. et al. // Cryst. Growth Des. 2020. V. 20. № 10. P. 6461. https://doi.org/10.1021/acs.cgd.0c00637
- Никифоров И.В., Дейнеко Д.В., Спасский Д.А., Лазоряк Б.И. // Неорган. материалы. 2019. Т. 55. № 8. С. 859. https://doi.org/10.1134/s0002337x19070121
- Nord A.G. // Monatshefte. 1983. V. 11. P. 489.
- Judd B.R. // J. Chem. Phys. 1966. V. 44. № 2. P. 839. https://doi.org/10.1063/1.1726774
- Britvin S.N., Pakhomovskii Y.A., Bogdanova A.N., Skiba V.I. // Can. Mineral. 1991. V. 29. № 1. P. 87.
- Atencio D., Azzi A.d.A. // Mineralog. Mag. 2020. V. 84. № 6. P. 928. https://doi.org/10.1180/mgm.2020.86
- Szyszka K., Nowak N., Kowalski R.M. et al. // J. Mater. Chem. C. 2022. V. 10. № 23. P. 9092. https://doi.org/10.1039/D2TC00891B
- Chen J., Liang Y., Zhu Y. et al. // J. Lumin. 2019. V. 214. P. 116569. https://doi.org/10.1016/j.jlumin.2019.116569
- Jiang Y., Liu W., Cao X. et al. // J. Rare Earths. 2017. V. 35. № 2. P. 142. https://doi.org/10.1016/S1002-0721(17)60892-5
- Leng Z., Li L., Che X., Li G. // Mater. Des. 2017. V. 118. P. 245. https://doi.org/10.1016/j.matdes.2017.01.038
- Dai S., Zhang W., Zhou D. et al. // Ceram. Int. 2017. V. 43. № 17. P. 15493. https://doi.org/10.1016/j.ceramint.2017.08.097
- Cheng L., Zhang W., Li Y. et al. // Ceram. Int. 2017. V. 43. № 14. P. 11244. https://doi.org/10.1016/j.ceramint.2017.05.174
- Sarver J.F., Hoffman M.V., Hummel F.A. // J. Electrochem. Soc. 1961. V. 108. № 12. P. 1103. https://doi.org/10.1149/1.2427964
- Sun W., Li H., Li B. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 10. P. 9421. https://doi.org/10.1007/s10854-019-01272-6
- Huang C.H., Chiu Y.C., Yeh Y.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6661. https://doi.org/10.1021/am302014e
- Luo J., Zhou W., Fan J. et al. // J. Lumin. 2021. V. 239. P. 118369. https://doi.org/10.1016/j.jlumin.2021.118369
- Zhou J., Chen M., Ding J. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31940. https://doi.org/10.1016/j.ceramint.2021.08.080
- Tang W., Xue H. // RSC Adv. 2014. V. 4. № 107. P. 62230. https://doi.org/10.1039/C4RA10274F
- Zhou W., Fan J., Luo J. et al. // Mater. Today Chem. 2023. V. 27. P. 101263. https://doi.org/10.1016/j.mtchem.2022.101263
- Chi F., Dai W., Jiang B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 27. P. 15632. https://doi.org/10.1039/D0CP02544E
- Ding X., Wang Y. // Acta Mater. 2016. V. 120. P. 281. https://doi.org/10.1016/j.actamat.2016.08.070
- Ma X., Sun S., Ma J. // Mater. Res. Express. 2019. V. 6. № 11. P. 116207. https://doi.org/10.1088/2053-1591/ab47c6
- Yu Q., Wang L., Huang P. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. № 1. P. 196. https://doi.org/10.1007/s10854-018-0501-3
- Kim D., Seo Y.W., Park S.H. et al. // Mater. Res. Bull. 2020. V. 127. P. 110856. https://doi.org/10.1016/j.materresbull.2020.110856
- Belik A.A., Lazoryak B.I., Pokholok K.V. et al. // J. Solid State Chem. 2001. V. 162. № 1. P. 113. https://doi.org/10.1006/jssc.2001.9363
- Gallyamov E.M., Titkov V.V., Lebedev V.N. et al. // Materials. 2023. V. 16. № 12. P. 4392. https://doi.org/10.3390/ma16124392
- Mosafer H.S.R., Paszkowicz W., Minikayev R. et al. // Crystals. 2023. V. 13. № 5. P. 853. https://doi.org/10.3390/cryst13050853
- Xie G., Wu M., Li T. et al. // Phys. Status Solidi. B. 2022. V. 259. № 11. P. 2200259. https://doi.org/10.1002/pssb.202200259
- Helode S.J., Kadam A.R., Dhoble S.J. // J. Solid State Chem. 2023. V. 325. P. 124149. https://doi.org/10.1016/j.jssc.2023.124149
- Zhou J., Chen M., Zhang J. et al.// Chem. Eng. J. 2021. V. 426. P. 131869. https://doi.org/10.1016/j.cej.2021.131869
- Zhang C., Yao C. // Ceram. Int. 2021. V. 47. № 24. P. 34721. https://doi.org/10.1016/j.ceramint.2021.09.011
- Никифоров И.В., Дейнеко Д.В., Дускаев И.Ф. // ФТТ. 2020. Т. 62. Вып. 5. С. 766. https://doi.org/10.21883/FTT.2020.05.49243.19M
- Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // CrystEngComm. 2019. V. 21. № 35. P. 5235. https://doi.org/10.1039/C9CE00931K
- Deyneko D.V., Morozov V.A., Vasin A.A. et al. // J. Lumin. 2020. V. 223. P. 117196. https://doi.org/10.1016/j.jlumin.2020.117196
- Nikiforov I.V., Spassky D.A., Krutyak N.R. et al. // Molecules. 2024. V. 29. № 1. P. 124. https://doi.org/10.3390/molecules29010124
- Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // J. Alloys Compd. 2021. V. 887. P. 161340. https://doi.org/10.1016/j.jallcom.2021.161340
- Belik A.A., Izumi F., Ikeda T. et al. // Phosphorus, Sulfur, and Silicon and the Related Elements. 2002. V. 177. № 6–7. P. 1899. https://doi.org/10.1080/10426500212245
- Bessière A., Benhamou R.A., Wallez G. et al. // Acta Mater. 2012. V. 60. № 19. P. 6641. https://doi.org/10.1016/j.actamat.2012.08.034
- Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. http://dx.doi.org/10.1016/j.apsusc.2015.12.159
- Langell M.A., Hutchings C.W., Carson G.A., Nassir M.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 3. P. 1656. https://doi.org/10.1116/1.580314
- Soares E.A., Paniago R., de Carvalho V.E. et al. // Phys. Rev. B. 2006. V. 73. № 3. P. 035419. https://doi.org/10.1103/PhysRevB.73.035419
- Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 39. https://doi.org/10.1116/1.1247889
- Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 31. https://doi.org/10.1116/1.1247888
- Никифоров И.В., Титков В.В., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. № 8. С. 131548. https://doi.org/10.26902/jsc_id131548
- Dickens B., Schroeder L.W., Brown W.E. // J. Solid State Chem. 1974. V. 10. № 3. P. 232. https://doi.org/10.1016/0022-4596(74)90030-9
- Gopal R., Calvo C., Ito J., Sabine W.K. // Can. J. Chem. 1974. V. 52. № 7. P. 1155. https://doi.org/10.1139/v74-181
- Batool S., Liaqat U., Babar B., Hussain Z. // J. Korean Ceram. Soc. 2021. V. 58. № 5. P. 530. https://doi.org/10.1007/s43207-021-00120-w
- Deyneko D.V., Spassky D.A., Antropov A.V. et al. // Mater. Res. Bull. 2023. V. 165. P. 112296. https://doi.org/10.1016/j.materresbull.2023.112296
- Shannon R. // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/s0567739476001551
- Han Y.-j., Wang S., Liu H. et al. // J. Alloys Compd. 2020. V. 844. P. 156070. https://doi.org/10.1016/j.jallcom.2020.156070
- Lakshminarayana G., Buddhudu S. // Mater. Chem. Phys. 2007. V. 102. № 2. P. 181. https://doi.org/10.1016/j.matchemphys.2006.11.020
Supplementary files
