Phaseformation in triple systems phosphates Sr–M2+Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase formation in a system of triple phosphates Sr–M2+Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+) has been investigated. The crystallization of strontiowhitlockite like structure and isomorphism in a series Sr9–xMnxTb(PO4)7, Sr9–xMgxEu(PO4)7 and Sr9–xZnxEu(PO4)7 (0 ≤ x ≤ 1.0) was described. The species were synthesized through solid-state reaction. It was shown that unlimited series of solid solutions can not be formed. The formation of a strontiowhitlockite-like structure was observed for only stoichiometric compositions Sr8MgEu(PO4)7 and Sr8ZnEu(PO4)7. Crystal chemical aspects of the formation of the strontiowhitlockite structure in the series were analysed. Samples with the strontiowhitlockite structure are crystallized in centrosymmetric space group (sp. gr. R3m) compared to a mother structure, mineral whitlockite, and its synthetic modifications based on calcium phosphate. The conditions for the formation of phosphates with the structure of stronciowhitlockite are indicated. The photoluminescence properties were described, and it was shown that samples exhibit intense emission in the red-orange region, due to the presence of Eu3+ ions. A quenching effect in Sr9–xMnxTb(PO4)7 was detected.

Full Text

Restricted Access

About the authors

I. V. Nikiforov

Lomonosov Moscow State University

Author for correspondence.
Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow

K. N. Yashina

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow

E. S. Zhukovskaya

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow

S. I. Gutnikov

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Russian Federation, Moscow

S. М. Aksenov

Kola Science Centre, Russian Academy of Sciences

Email: nikiforoviv@my.msu.ru

Geological Institute; Laboratory of Arctic Mineralogy and Material Sciences

Russian Federation, Apatity

D. V. Deyneko

Lomonosov Moscow State University; Kola Science Centre, Russian Academy of Sciences

Email: nikiforoviv@my.msu.ru

Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences

Russian Federation, Moscow; Apatity

References

  1. Zhang Z.-W., Wu Y.-N., Shen X.-H. et al. // Opt. Laser Technol. 2014. V. 62. P. 63. https://doi.org/10.1016/j.optlastec.2014.02.014
  2. Zhu D., Liao M., Mu Z., Wu F. // J. Electron. Mater. 2018. V. 47. № 8. P. 4840. https://doi.org/10.1007/s11664-018-6380-9
  3. Deyneko D.V., Aksenov S.M., Nikiforov I.V. et al. // Cryst. Growth Des. 2020. V. 20. № 10. P. 6461. https://doi.org/10.1021/acs.cgd.0c00637
  4. Никифоров И.В., Дейнеко Д.В., Спасский Д.А., Лазоряк Б.И. // Неорган. материалы. 2019. Т. 55. № 8. С. 859. https://doi.org/10.1134/s0002337x19070121
  5. Nord A.G. // Monatshefte. 1983. V. 11. P. 489.
  6. Judd B.R. // J. Chem. Phys. 1966. V. 44. № 2. P. 839. https://doi.org/10.1063/1.1726774
  7. Britvin S.N., Pakhomovskii Y.A., Bogdanova A.N., Skiba V.I. // Can. Mineral. 1991. V. 29. № 1. P. 87.
  8. Atencio D., Azzi A.d.A. // Mineralog. Mag. 2020. V. 84. № 6. P. 928. https://doi.org/10.1180/mgm.2020.86
  9. Szyszka K., Nowak N., Kowalski R.M. et al. // J. Mater. Chem. C. 2022. V. 10. № 23. P. 9092. https://doi.org/10.1039/D2TC00891B
  10. Chen J., Liang Y., Zhu Y. et al. // J. Lumin. 2019. V. 214. P. 116569. https://doi.org/10.1016/j.jlumin.2019.116569
  11. Jiang Y., Liu W., Cao X. et al. // J. Rare Earths. 2017. V. 35. № 2. P. 142. https://doi.org/10.1016/S1002-0721(17)60892-5
  12. Leng Z., Li L., Che X., Li G. // Mater. Des. 2017. V. 118. P. 245. https://doi.org/10.1016/j.matdes.2017.01.038
  13. Dai S., Zhang W., Zhou D. et al. // Ceram. Int. 2017. V. 43. № 17. P. 15493. https://doi.org/10.1016/j.ceramint.2017.08.097
  14. Cheng L., Zhang W., Li Y. et al. // Ceram. Int. 2017. V. 43. № 14. P. 11244. https://doi.org/10.1016/j.ceramint.2017.05.174
  15. Sarver J.F., Hoffman M.V., Hummel F.A. // J. Electrochem. Soc. 1961. V. 108. № 12. P. 1103. https://doi.org/10.1149/1.2427964
  16. Sun W., Li H., Li B. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 10. P. 9421. https://doi.org/10.1007/s10854-019-01272-6
  17. Huang C.H., Chiu Y.C., Yeh Y.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6661. https://doi.org/10.1021/am302014e
  18. Luo J., Zhou W., Fan J. et al. // J. Lumin. 2021. V. 239. P. 118369. https://doi.org/10.1016/j.jlumin.2021.118369
  19. Zhou J., Chen M., Ding J. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31940. https://doi.org/10.1016/j.ceramint.2021.08.080
  20. Tang W., Xue H. // RSC Adv. 2014. V. 4. № 107. P. 62230. https://doi.org/10.1039/C4RA10274F
  21. Zhou W., Fan J., Luo J. et al. // Mater. Today Chem. 2023. V. 27. P. 101263. https://doi.org/10.1016/j.mtchem.2022.101263
  22. Chi F., Dai W., Jiang B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 27. P. 15632. https://doi.org/10.1039/D0CP02544E
  23. Ding X., Wang Y. // Acta Mater. 2016. V. 120. P. 281. https://doi.org/10.1016/j.actamat.2016.08.070
  24. Ma X., Sun S., Ma J. // Mater. Res. Express. 2019. V. 6. № 11. P. 116207. https://doi.org/10.1088/2053-1591/ab47c6
  25. Yu Q., Wang L., Huang P. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. № 1. P. 196. https://doi.org/10.1007/s10854-018-0501-3
  26. Kim D., Seo Y.W., Park S.H. et al. // Mater. Res. Bull. 2020. V. 127. P. 110856. https://doi.org/10.1016/j.materresbull.2020.110856
  27. Belik A.A., Lazoryak B.I., Pokholok K.V. et al. // J. Solid State Chem. 2001. V. 162. № 1. P. 113. https://doi.org/10.1006/jssc.2001.9363
  28. Gallyamov E.M., Titkov V.V., Lebedev V.N. et al. // Materials. 2023. V. 16. № 12. P. 4392. https://doi.org/10.3390/ma16124392
  29. Mosafer H.S.R., Paszkowicz W., Minikayev R. et al. // Crystals. 2023. V. 13. № 5. P. 853. https://doi.org/10.3390/cryst13050853
  30. Xie G., Wu M., Li T. et al. // Phys. Status Solidi. B. 2022. V. 259. № 11. P. 2200259. https://doi.org/10.1002/pssb.202200259
  31. Helode S.J., Kadam A.R., Dhoble S.J. // J. Solid State Chem. 2023. V. 325. P. 124149. https://doi.org/10.1016/j.jssc.2023.124149
  32. Zhou J., Chen M., Zhang J. et al.// Chem. Eng. J. 2021. V. 426. P. 131869. https://doi.org/10.1016/j.cej.2021.131869
  33. Zhang C., Yao C. // Ceram. Int. 2021. V. 47. № 24. P. 34721. https://doi.org/10.1016/j.ceramint.2021.09.011
  34. Никифоров И.В., Дейнеко Д.В., Дускаев И.Ф. // ФТТ. 2020. Т. 62. Вып. 5. С. 766. https://doi.org/10.21883/FTT.2020.05.49243.19M
  35. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // CrystEngComm. 2019. V. 21. № 35. P. 5235. https://doi.org/10.1039/C9CE00931K
  36. Deyneko D.V., Morozov V.A., Vasin A.A. et al. // J. Lumin. 2020. V. 223. P. 117196. https://doi.org/10.1016/j.jlumin.2020.117196
  37. Nikiforov I.V., Spassky D.A., Krutyak N.R. et al. // Molecules. 2024. V. 29. № 1. P. 124. https://doi.org/10.3390/molecules29010124
  38. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // J. Alloys Compd. 2021. V. 887. P. 161340. https://doi.org/10.1016/j.jallcom.2021.161340
  39. Belik A.A., Izumi F., Ikeda T. et al. // Phosphorus, Sulfur, and Silicon and the Related Elements. 2002. V. 177. № 6–7. P. 1899. https://doi.org/10.1080/10426500212245
  40. Bessière A., Benhamou R.A., Wallez G. et al. // Acta Mater. 2012. V. 60. № 19. P. 6641. https://doi.org/10.1016/j.actamat.2012.08.034
  41. Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. http://dx.doi.org/10.1016/j.apsusc.2015.12.159
  42. Langell M.A., Hutchings C.W., Carson G.A., Nassir M.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 3. P. 1656. https://doi.org/10.1116/1.580314
  43. Soares E.A., Paniago R., de Carvalho V.E. et al. // Phys. Rev. B. 2006. V. 73. № 3. P. 035419. https://doi.org/10.1103/PhysRevB.73.035419
  44. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 39. https://doi.org/10.1116/1.1247889
  45. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 31. https://doi.org/10.1116/1.1247888
  46. Никифоров И.В., Титков В.В., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. № 8. С. 131548. https://doi.org/10.26902/jsc_id131548
  47. Dickens B., Schroeder L.W., Brown W.E. // J. Solid State Chem. 1974. V. 10. № 3. P. 232. https://doi.org/10.1016/0022-4596(74)90030-9
  48. Gopal R., Calvo C., Ito J., Sabine W.K. // Can. J. Chem. 1974. V. 52. № 7. P. 1155. https://doi.org/10.1139/v74-181
  49. Batool S., Liaqat U., Babar B., Hussain Z. // J. Korean Ceram. Soc. 2021. V. 58. № 5. P. 530. https://doi.org/10.1007/s43207-021-00120-w
  50. Deyneko D.V., Spassky D.A., Antropov A.V. et al. // Mater. Res. Bull. 2023. V. 165. P. 112296. https://doi.org/10.1016/j.materresbull.2023.112296
  51. Shannon R. // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/s0567739476001551
  52. Han Y.-j., Wang S., Liu H. et al. // J. Alloys Compd. 2020. V. 844. P. 156070. https://doi.org/10.1016/j.jallcom.2020.156070
  53. Lakshminarayana G., Buddhudu S. // Mater. Chem. Phys. 2007. V. 102. № 2. P. 181. https://doi.org/10.1016/j.matchemphys.2006.11.020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of Sr9–xMgxEu(PO4)7 and bar diffraction patterns of the phases Sr9Fe1.5(PO4)7 (PDF-2 51-427) (1), Sr3Eu(PO4)3 (PDF-2 48-410) (2), Sr3(PO4)2 (PDF-2 80-1614) (3) (a); percentage content of the phases Sr9–xM2+xEu(PO4)7, M2+ = Mg2+ (b), Zn2+ (c).

Download (383KB)
3. Fig. 2. Diffraction patterns of Sr9–xMnxTb(PO4)7 and bar diffraction patterns of the Sr9Fe1.5(PO4)7 (PDF-2 51-427) (1) and Sr3(PO4)2 (PDF-2 80-1614) (2) phases (reflexes of the Tb7O12 (PDF-2 34-518) phase are indicated by an asterisk) (a); percentage content of the Sr9–xMnxTb(PO4)7 phases (b).

Download (329KB)
4. Fig. 3. XPS spectra of Mn2p (a) and Mn3s (b) of Sr9–xMnxTb(PO4)7 at x = 0.2 (1), 1.0 (2).

Download (223KB)
5. Fig. 4. Roseboom concentration triangle for the Sr3(PO4)2–Mg3(PO4)2–EuPO4 (a) and Sr3(PO4)2–Mn3(PO4)2–TbPO4 (b) systems: e – eulytine phase Sr3Eu(PO4)3 (Sr3Tb(PO4)3); s – SrMg2(PO4)2 (SrMn2(PO4)2); m – Mg3(PO4)2:0.5Eu3+; w1 – (Sr0.86Mg0.14)3(PO4)2, w2 – (Sr0.95Mg0.04)3(PO4)2, w3 – Sr9Mn1.5(PO4)7 [39]; the compositions obtained in the present work are marked with an asterisk (the asterisk in a circle is a single-phase composition).

Download (267KB)
6. Fig. 5. Structure of palmierite Sr3(PO4)2 (a) and comparison of octahedral positions of Sr1O6+6 in palmierite (b) and M5O6 in strontiovitlockite (c) with indication of average distances between the central atom and oxygen.

Download (160KB)
7. Fig. 6. Excitation (λemitted = 615 nm) (a) and emission (λexcited = 395 nm) (b) spectra of PL of Sr8MgEu(PO4)7 (1) and Sr8ZnEu(PO4)7 (2).

Download (170KB)
8. Fig. 7. Excitation (λemitted = 547 nm) (a) and emission (λexcited = 375 nm) (b) spectra of PL Sr9–xMnxTb(PO4)7.

Download (264KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».