Photo-fenton reaction for the decomposition of RR195 dye in the presence of the metal-organic polymer MIL-53(Fe3+) and a composite with graphene oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The metal-organic polymer of the composition Fe(OH)(BDC)×(H2O)2 – MIL-53(Fe) and the composite MIL-53(Fe)/GO (GO – graphene oxide) were obtained by the solvothermal method and characterized by X-ray diffraction and X-ray absorption and IR-Fourier spectroscopy, scanning electron microscopy. The presence of Fe2+ and Fe3+ ions in MIL-53(Fe) and MIL-53(Fe)/GO was established with a higher content of Fe2+ ions in MIL-53(Fe)/GO, which helps to increase the efficiency of the decomposition reaction of the RR195 dye, which is actively used in textile industry for dyeing fabrics in the photo-Fenton reaction.

Full Text

Restricted Access

About the authors

G. M. Kuz’micheva

MIREA – Russian Technological University

Email: ms.asenka1984@mail.ru
Russian Federation, 78 Vernadsky Avenue, Moscow, 119454

A. A. Gainanova

MIREA – Russian Technological University

Author for correspondence.
Email: ms.asenka1984@mail.ru
Russian Federation, 78 Vernadsky Avenue, Moscow, 119454

Ke Quang Nguyen

MIREA – Russian Technological University

Email: ms.asenka1984@mail.ru
Russian Federation, 78 Vernadsky Avenue, Moscow, 119454

E. V. Khramov

National Research Center “Kurchatov Institute”

Email: ms.asenka1984@mail.ru
Russian Federation, 1 Akademika Kurchatova pl., Moscow 123182

R. D. Svetogorov

National Research Center “Kurchatov Institute”

Email: ms.asenka1984@mail.ru
Russian Federation, 1 Akademika Kurchatova pl., Moscow 123182

References

  1. Qasem N.A.A., Ben-Mansour R., Habib M.A. // Appl. En. 2018. V. 60. P. 317. https://doi.org/10.1016/j.apenergy.2015.10.011
  2. Almáši M., Zeleňák V., Palotai P. et al. // Inorg. Chem. Commun. 2018. V. 93. P. 115. https://doi.org/10.1016/j.inoche.2018.05.007
  3. Wang C.-C., Zhang Y.-Q., Li J., Wang P. // Appl. Catal. B. 2016. V. 193. P. 198. https://doi.org/10.1016/j.apcatb.2016.04.030
  4. Dhaka S., Kumar R., Deep A. et al. // Coord. Chem. Rev. 2019. V. 380. P. 330. https://doi.org/10.1016/j.ccr.2018.10.003
  5. Zhang C., Ai L., Jiang J. // J. Mater. Chem. A. 2015. V. 3. P. 3074. https://doi.org/10.1039/C4TA04622F
  6. Wang C.-C., Li J.-R., Lv X.-L. et al. // Energy Environ. Sci. 2014. V. 7. № 9. P. 2831. https://doi.org/10.1039/C4EE01299B
  7. Al-Rowaili F., Jamal A., Ba-Shammakh M.S., Rana A. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 15895. https://doi.org/10.1021/acssuschemeng.8b03843
  8. Dhakshinamoorthy A., Alvaro M., Garcia H. // Chem. Commun. 2012. V. 48. № 92. P. 11275. https://doi.org/10.1039/C2CC34329K
  9. Trinh N.D., Hong S.-S. // J. Nanosci. Nanotechnol. 2015. V. 15. P. 5450. https://doi.org/10.1166/jnn.2015.10378
  10. Ai L., Zhang C., Li L., Jiang J. // Appl. Catal. B. 2014. V. 148–149. P. 191. https://doi.org/10.1016/j.apcatb.2013.10.056
  11. Liang R., Shen L., Jing F. et al. // ACS Appl. Mater. Interfaces. 2014. V. 7. № 18. P. 9507. https://doi.org/10.1021/acsami.5b00682
  12. Zhang Y., Zhou J., Chen J. et al. // J. Hazardous Mater. 2020. V. 392. P. 122315. https://doi.org/10.1016/j.jhazmat.2020.122315
  13. Dong C., Xing M., Zhang J. // Front. Environ. Chem. 2020. V. 1. P. 8. https://doi.org/10.3389/fenvc.2020.00008
  14. Xiong W., Zeng G., Yang Z. et al. // Sci. Total Environ. 2018. V. 627. P. 235. https://doi.org/10.1016/j.scitotenv.2018.01.249
  15. Zhao W., Zheng Y., Cui L. et al. // Chem. Eng. J. 2019. V. 371. P. 461. https://doi.org/10.1016/j.cej.2019.04.070
  16. Yang Z., Xu X., Liang X. et al. // Appl. Catal. B. 2016. V. 198. P. 112. https://doi.org/10.1016/j.apcatb.2016.05.041
  17. Vu T.A., Le G.H., Dao C.D. et al. // RSC Adv. 2015. V. 5. P. 5261. https://doi.org/10.1039/C4RA12326C
  18. Sarkar C., Basu J.K., Samanta A.N. // Chem. Eng. J. 2019. V. 377. P. 119621. https://doi.org/10.1016/j.cej.2018.08.007
  19. Chen Q., Zhang J., Lu J., Liu H. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16400. https://doi.org/10.1016/j.ijhydene.2019.04.252
  20. Huang Z.-H., Liu G., Kang F. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 4942. https://doi.org/10.1021/am3013104
  21. Vu H.T., Tran L.T., Le G.H. et al. // Vietnam J. Chem. 2019. V. 57. № 6. P. 681. https://doi.org/10.1002/vjch.201900055
  22. Wu Q., Liu Y., Jing H. et al. // Chem. Eng. J. 2020. V. 390. P. 124615. https://doi.org/10.1016/j.cej.2020.124615
  23. Sert E., Yılmaz E., Atalay F.S. // Anadolu University J. Sci. Technol. A. 2017. V. 18. № 5. P. 1107. https://doi.org/10.18038/aubtda.328791
  24. Chaturvedi G., Kaur A., Kansal S.K. // J. Phys. Chem. C. 2019. V. 123. № 27. P. 16857. https://doi.org/10.1021/acs.jpcc.9b04312
  25. Светогоров Р.Д. Свидетельство № 2018661057 на программу для ЭВМ “Diana – Diffraction Analyzer” от 31.08.2018.
  26. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  27. Nguyen Q.K., Kuz’micheva G.M., Khramov E.V. et al. // Crystals. 2021. V. 11. P. 1281. https://doi.org/10.3390/cryst11111281
  28. Millange F., Guillou N., Walton R.I. et al. // Chem. Commun. 2008. V. 39. P. 4732. https://doi.org/10.1039/b809419e
  29. Wu L., Chaplais G., Xue M. et al. // RSC Adv. 2019. V. 9. № 4. P. 1918. https://doi.org/10.1039/c8ra08522f
  30. Ain Q.T., Haq S.H., Alshammari A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 901. https://doi.org/10.3762/bjnano.10.91
  31. Siburian R., Sihotang H., Lumban Raja S. et al. // Oriental J. Chem. 2018. V. 34. № 1. P. 182. https://doi.org/10.13005/ojc/340120
  32. Nivetha R., Kollu P., Chandar K. et al. // RSC Adv. 2019. V. 9. № 6. P. 3215. https://doi.org/10.1039/c8ra08208a
  33. Lis M.J., Caruzi B.B., Gil G.A. et al. // Polymers. 2019. V. 11. № 4. P. 713. https://doi.org/10.3390/polym11040713
  34. Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. M.: Наука, 1970. 560 c.
  35. Quang T.T., Truong N.X., Minh T.H. et al. // Topics Catal. 2020. V. 63. № 11–14. P. 1227. https://doi.org/10.1007/s11244-020-01364-2
  36. Pham D.D., Pham N.H. // Adv. Mater. Sci. Eng. 2021. V. 2021. № 1. 5540344. https://doi.org/10.1155/2021/5540344
  37. Ameta R., Chohadia K.A., Jain A., Punjabi P.B. // Advanced Oxidation Processes for Waste Water Treatment. Academic Press, 2018. P. 49. https://doi.org/10.1016/b978-0-12-810499-6.00003-6
  38. Behravesh N., Younesi H., Bahramifar N. et al. // Ecotoxicol. Environ. Safety. 2024. V. 285. P. 117057. https://doi.org/10.1016/j.ecoenv.2024.117057

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of synthesis of MIL-53(Fe)/GO and MIL-53(Fe) samples.

Download (429KB)
3. Fig. 2. Diffraction patterns of experimental samples MIL-53(Fe)/GO (1), MIL-53(Fe)-I (2), MIL-53(Fe)-II (3) and theoretical bar chart of sample MIL-53(Fe) (recalculated to CuKα) from CCDC database #690316 (a). Solid arrows indicate reflections of impurity phase/phases, dashed arrows indicate reflections of graphene oxide. Diffraction pattern of graphene oxide (b). Schematic representation of change in shape of fragment of MIL-53(Fe)/GO framework (c).

Download (264KB)
4. Fig. 3. XANES (a) and EXAFS spectra (b) at the K-edge of Fe absorption of samples MIL-53(Fe)/GO (1), MIL-53(Fe)-I (2), MIL-53(Fe)-II) (3) and standards FeO (4), α-Fe2O3 (5), γ-Fe2O3 (6), Fe (7).

Download (283KB)
5. Fig. 4. FTIR spectra of MIL-53(Fe)-II (1) and MIL-53(Fe)/GO (2) samples.

Download (221KB)
6. Fig. 5. SEM (a, b) and TEM images (c, d) of MIL-53(Fe)-II (a, c) and MIL-53(Fe)/GO (b, d) samples (arrows indicate MIL-53(Fe) nanoparticles); SEM image of the MIL-53(Fe)/GO composite with iron mapping (d).

Download (668KB)
7. Fig. 6. Kinetic curves of photodegradation of RR195 dye: a – in the presence of H2O2 (1), MIL-53(Fe)/GO (2, 4) and MIL-53(Fe)-II (3) photocatalysts upon introduction of 0.4 ml of H2O2 (3, 4) into the photoreaction mixture and irradiation with visible light (1, 3, 4); b – at a volume of H2O2 introduced into the mixture of 0.2 (1), 0.4 (2), 0.6 ml (3); c – mixture pH 3 (1), 5.5 (2), 7.5 (3); d – initial concentration of RR195 150 (1), 125 (2), 100 ppm (3); d – stability of catalytic activity in the first (1), second (2) and third (3) photoreaction cycles.

Download (403KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».