Thermal evolution and crystal structure features of Cs2SO4 and Cs2Ca3(SO4)4 sulfates
- Authors: Shablinskii A.P.1,2, Demina S.V.1, Biryukov Y.P.1, Bubnova R.S.1, Krzhizhanovskaya M.G.1,3, Filatov S.K.3
-
Affiliations:
- Petersburg Nuclear Physics Institute named by B.P.Konstantinov
- St. Petersburg Electrotechnical University
- St. Petersburg State University
- Issue: Vol 70, No 3 (2025)
- Pages: 372-382
- Section: КРИСТАЛЛОХИМИЯ
- URL: https://journals.rcsi.science/0023-4761/article/view/293755
- DOI: https://doi.org/10.31857/S0023476125030033
- EDN: https://elibrary.ru/BEJIXQ
- ID: 293755
Cite item
Abstract
For the first time, the thermal expansion of two modifications of α- and β-Cs2SO4, as well as the compound Cs2Ca3(SO4)4, was studied by the high-temperature powder X-ray diffraction method in the temperature ranges of 25–960 and 25–540°C, respectively. β-Cs2SO4 transforms into the high-temperature α-Cs2(SO4) modification through a two-phase region – in the range of 600–750°C. The thermal expansion of all the studied phases is sharply anisotropic: αa = 37.3(10), αb = 36.2(4), αc = 12(5), αV = 85.1(5) at 30°C for β-Cs2SO4; αa = 55(5), αc = 115(9), αV = 224(12) ∙ 10–6 °С–1 at 750°С for α-Cs2SO4. The thermal expansion coefficients for Cs2Ca3(SO4)4 are: α11 = 18.8(5), αb = 18.2(5), α33 = –7.5(2), αβ = –10.6(2), αV = 29.6(9) ∙ 10–6 °С–1 at 25°С. The inheritance of the polymorphic transformation of Cs2SO4 is shown, consisting in the fact that with an increase in temperature, the corrugated columns or rods elongated along the c axis in both modifications, consisting of Cs(SO4)6 microblocks, straighten due to the rotation of SO4 tetrahedra. The interpretation of the anisotropy of the thermal expansion of Cs2Ca3(SO4)4 is based on the mechanism of rocking polyhedra, a hinge deformation at the level of Ca(SO4)6 microblocks is revealed, leading to a large negative thermal expansion in the α33 direction.
Full Text

About the authors
A. P. Shablinskii
Petersburg Nuclear Physics Institute named by B.P.Konstantinov; St. Petersburg Electrotechnical University
Author for correspondence.
Email: shablinskii.andrey@mail.ru
National Research Center «Kurchatov Institute», Petersburg Nuclear Physics Institute named by B.P.Konstantinov, Grebenchikov Institute of Silicate Chemistry
Russian Federation, Makarova Emb. 2, 199034, St. Petersburg; Prof. Popova Str. 5, 197022, St. PetersburgS. V. Demina
Petersburg Nuclear Physics Institute named by B.P.Konstantinov
Email: shablinskii.andrey@mail.ru
National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry
Russian Federation, Makarova Emb. 2, 199034, St. PetersburgY. P. Biryukov
Petersburg Nuclear Physics Institute named by B.P.Konstantinov
Email: shablinskii.andrey@mail.ru
National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry
Russian Federation, Makarova Emb. 2, 199034, St. PetersburgR. S. Bubnova
Petersburg Nuclear Physics Institute named by B.P.Konstantinov
Email: shablinskii.andrey@mail.ru
National Research Center «Kurchatov Institute», Grebenchikov Institute of Silicate Chemistry
Russian Federation, Makarova Emb. 2, 199034, St. PetersburgM. G. Krzhizhanovskaya
Petersburg Nuclear Physics Institute named by B.P.Konstantinov; St. Petersburg State University
Email: shablinskii.andrey@mail.ru
National Research Center «Kurchatov Institute», Petersburg Nuclear Physics Institute named by B.P.Konstantinov, Grebenchikov Institute of Silicate Chemistry
Russian Federation, Makarova Emb. 2, 199034, St. Petersburg; University Emb. 7/9, 199034, St. PetersburgS. K. Filatov
St. Petersburg State University
Email: shablinskii.andrey@mail.ru
Russian Federation, University Emb. 7/9, 199034, St. Petersburg
References
- Wu C., Wu T.H., Jiang X.X. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4138. https://doi.org/10.1021/jacs.1c00416
- Yang F., Huang L., Zhao X. et al. // J. Mater. Chem. C. 2019. V. 7. P. 8131. https://doi.org/10.1039/C9TC02180A
- Dong X., Huang L., Hu C. et al. // Angew. Chem. 2019. V. 131. P. 6598. https://doi.org/10.1002/ange.201900637
- Chen K.C., Yang Y., Peng G. et al. // J. Mater. Chem. C. 2019. V. 7. P. 9900. https://doi.org/10.1039/C9TC03105G
- Li Y., Liang F., Zhao S. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 3833. https://doi.org/10.1021/jacs.9b00138
- Tang H.X., Zhang Y.X., Zhuo C. et al. // Angew. Chem. 2019. V. 58. P. 3824. https://doi.org/10.1002/anie.201813122
- Mary T.A., Evans J.S.O., Vogt T. et al. // Science. 1996. V. 272. P. 90. https://doi.org/10.1126/science.272.5258.90
- Takenaka K. // Front. Chem. 2018. V. 6. P. 267. https://doi.org/10.3389/fchem.2018.00267
- Dang P., Yun X., Zhang Q. et al. // Light Sci. Appl. 2021. V. 10. P. 29. https://doi.org/10.1038/s41377-021-00469-x
- Wang M., Wei M., Liang L. et al. // Inorg. Chem. Commun. 2019. V. 107. 107486.
- Fang P., Tang W., Shen Y. et al. // Crystals. 2022. V. 12. 126. https://doi.org/10.3390/cryst12020126
- Ogg A. // Philos. Mag. 1928. V. 5. P. 354. https://doi.org/10.1080/14786440208564474
- Taylor W., Boyer T. // Mem. Proc. Manchester. 1928. V. 72. P. 125.
- Nord A.G. // Acta Chem. Scan. B. 1976. V. 30. P. 198. https://doi.org/10.3891/acta.chem.scand.30a-0198
- Weber H.J., Schulz M., Schmitz S. et al. // J. Phys.: Condens. Matter. 1989. V. 1. P. 8543. https://doi.org/10.1088/0953-8984/1/44/025
- Tutton A.E. // Philos. Trans. Royal Soc. A. 1899. V. 192. P. 350. https://doi.org/10.1098/rspl.1898.0112
- Haussuhl V.S. // Acta Cryst. 1965. V. 18. P. 839.
- Плющев В.Е. // Журн. неорган. химии. 1962. Т. 66. С. 1377.
- Levin E.M., Benedict J.T., Sciarello J.P. et al. // J. Am. Ceram. Soc. 1973. V. 56. № 8. P. 427.
- Fischmeister H.F. // Monatsh. Chem. 1962. V. 93. P. 420. https://doi.org/10.1007/BF00903139
- Sasaki A., Akihiro H., Hisashi K. et al. // Rigaku J. 2010. V. 26. Р. 10.
- Бубнова Р.С., Фирсова В.А., Волков С.Н. и др. // Физика и химия стекла. 2018. Т. 44. № 1. С. 48.
- Naruse H., Tanaka K., Morikawa H. et al. // Acta Cryst. В. 1987. V. 43. P. 143. https://doi.org/10.1107/S010876818709815X
- Arnold H., Kurtz W., Richter-Zinnius A. et al. // Acta Cryst. B. 1981. V. 37. P. 1643. https://doi.org/10.1107/S0567740881006808
- Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
- Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.
- Shablinskii A.P., Filatov S.K., Biryukov Y.P. // Phys. Chem. Miner. 2023. V. 50. P. 30. https://doi.org/10.1007/s00269-023-01253-6
- Филатов С.К. // Зап. Всесоюз. минерал. о-ва. 1982. Т. 111. № 4. С. 674.
- Filatov S.K., Andrianova L.V., Bubnova R.S. // Cryst. Res. Technol. 1984. V. 19. № 4. P. 563. https://doi.org/10.1002/crat.2170190421
- Sleight A.W. // Inorg. Chem. 1998. V. 37. № 12. Р. 2854. https://doi.org/10.1021/ic980253h
- Sleight A.W. // Endeavour. 1995. V. 19. № 2. P. 64. https://doi.org/10.1016/0160-9327(95)93586-4
Supplementary files
