Anhydrous natural sulfates with alkali cations: structural features, comparative crystal chemistry, and genetic mineralogy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review presents data on the crystal chemistry and genetic mineralogy of all known natural anhydrous sulfates with species-defining alkali cations—Na or/and K (61 mineral species, 48 structural types). These minerals are primarily associated with two genetic mineralization environments: volcanic fumaroles and evaporites. Both environments are characterized by low (atmospheric) pressure but differ significantly in temperature and crystallization mechanisms. Based on structural classification, the studied minerals are divided into two major groups: (1) those with an anionic motif consisting solely of SO₄ tetrahedra (sometimes including additional anions such as F, Cl, or CO₃), and (2) those with heteropolyhedral anionic motifs composed of SO₄ tetrahedra and polyhedra of cations with relatively high-strength characteristics (e.g., Mg, Mn, Zn, Cu, Fe, V, Al, Bi, Mo, As, Te, and occasionally Ca). This classification aligns with genetic types: the first group predominates in evaporitic environments, while the second group is more common in fumarolic settings. A clear positive correlation has been established between the degree of polymerization of the heteropolyhedral anionic motif and the number of minerals in which such motifs occur. Specifically, 18 minerals exhibit frameworks or pseudo-frameworks of varying topologies, 11 minerals feature layered motifs, eight minerals contain chain-like motifs, and only one mineral contains isolated heteropolyhedral complexes. Additionally, the review discusses various types of solid-solution breakdown and other solid-state transformations in high-temperature sulfates with aphthitalite-like structures from volcanic fumaroles.

Full Text

Restricted Access

About the authors

N. V. Zubkova

Lomonosov Moscow State University

Author for correspondence.
Email: n.v.zubkova@gmail.com
Russian Federation, Moscow

I. V. Pekov

Lomonosov Moscow State University

Email: n.v.zubkova@gmail.com
Russian Federation, Moscow

N. V. Potekhina

Lomonosov Moscow State University

Email: n.v.zubkova@gmail.com
Russian Federation, Moscow

D. Yu. Pushcharovsky

Lomonosov Moscow State University

Email: n.v.zubkova@gmail.com
Russian Federation, Moscow

References

  1. Rudnick R.L., Gao S. // Treatise on Geochemistry / Eds. Holland H.D., Turekian K.K. 2003. V. 3. https://doi.org/10.1016/B0-08-043751-6/03016-4
  2. Hawthorne F.C., Krivovichev S.V., Burns P.C. // Rev. Mineral. Geochem. 2000. V. 40. P. 1. https://doi.org/10.2138/rmg.2000.40.1
  3. Pushcharovsky D.Yu. // Crystallography Reports. 2023. V. 68 (Suppl. 1). P. S206. https://doi.org/10.1134/S1063774523601545
  4. Chukanov N.V., Shchipalkina N.V., Shendrik R.Yu. et al. // Minerals. 2022. V. 12. P. 1456. https://doi.org/10.3390/min12111456
  5. Пеков И.В., Чуканов Н.В., Щербаков В.Д. и др. // Записки Рос. минерал. о-ва. 2024. Т. 153. С. 12. https://doi.org/10.31857/S0869605524010023
  6. Hawthorne F.C., Ferguson R.B. // Can. Mineral. 1975. V. 13. P. 181. https://pubs.geoscienceworld.org/mac/canmin/article-abstract/13/2/181/11030/Anhydrous-sulphates-I-Refinement-of-the-crystal
  7. Зубкова Н.В., Пеков И.В., Ксенофонтов Д.А. и др. // Докл. РАН. 2018. Т. 479. С. 63. https://doi.org/10.7868/S0869565218010152
  8. Pekov I.V., Shchipalkina N.V., Zubkova N.V. et al. // Can. Mineral. 2019. V. 57. P. 885. https://doi.org/10.3749/canmin.1900050
  9. Okada K., Ossaka J. // Acta Cryst. В. 1980. V. 36. P. 919. https://doi.org/10.1107/S0567740880004852
  10. Shchipalkina N.V., Pekov I.V., Chukanov N.V. et al. // Can. Mineral. 2020. V. 58. P. 167. https://doi.org/10.3749/canmin.1900076
  11. Filatov S.K., Shablinskii A.P., Vergasova L.P. et al. // Mineral. Mag. 2019. V. 83. P. 569. https://doi.org/10.1180/mgm.2018.170
  12. Tissot R.G., Rodriguez M.A., Sipola D.L., Voigt J.A. // Powder Diffraction. 2001. V. 16. P. 92. https://doi.org/10.1154/1.1370567
  13. Мурашко М.Н., Пеков И.В., Кривовичев С.В. и др. // Записки Рос. минерал. о-ва. 2012. Т. 141. С. 36.
  14. Graeber E.J., Rosenzweig A. // Am. Mineral. 1971. V. 56. P. 1917.
  15. Balić-Žunić T., Garavelli A., Acquafredda P. et al. // Mineral. Mag. 2009. V. 73. P. 51. https://doi.org/10.1180/minmag.2009.073.1.51
  16. Araki T., Zoltai T. // Am. Mineral. 1967. V. 52. P. 1272.
  17. Siidra O.I., Lukina E.A., Nazarchuk E.V. et al. // Mineral. Mag. 2018. V. 82. P. 257. https://doi.org/10.1180/minmag.2017.081.037
  18. Mereiter K. // Neues Jahr. Mineral. Mh. 1979. P. 182.
  19. Oelkrug H., Brückel T., Hohlwein D. et al. // Phys. Chem. Mineral. 1988. V. 16. P. 246. https://doi.org/10.1007/BF00220692
  20. Pekov I.V., Zelenski M.E., Zubkova N.V. et al. // Mineral. Mag. 2012. V. 76. P. 673. https://doi.org/10.1180/minmag.2012.076.3.16
  21. Pekov I.V., Zubkova N.V., Galuskina I.O. et al. // Mineral. Mag. 2022. V. 86. P. 557. https://doi.org/10.1180/mgm.2021.95
  22. Balić-Žunić T., Pamato M.G., Nestola F. // Acta Cryst. Е. 2020. V. 76. P. 785. https://doi.org/10.1107/S2056989020005873
  23. Shablinskii A.P., Filatov S.K., Krivovichev S.V. et al. // Mineral. Mag. 2021. V. 85. P. 233. https://doi.org/10.1180/mgm.2021.9
  24. Shchipalkina N.V., Pekov I.V., Koshlyakova N.N. et al. // Mineral. Mag. 2024. V. 88. P. 49. https://doi.org/10.1180/mgm.2023.85
  25. Filatov S.K., Shablinskii A.P., Krivovichev S.V. et al. // Mineral. Mag. 2020. V. 84. P. 691. https://doi.org/10.1180/mgm.2020.53
  26. Nazarchuk E.V., Siidra O.I., Agakhanov A.A. et al. // Mineral. Mag. 2018. V. 82. P. 1233. https://doi.org/10.1180/minmag.2017.081.089
  27. Gorelova L.A., Vergasova L.P., Krivovichev S.V. et al. // Eur. J. Mineral. 2016. V. 28. P. 677. https://doi.org/10.1127/ejm/2016/0028-2530
  28. Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Shilovskikh V.V. // Mineral. Mag. 2020. V. 84. P. 153. https://doi.org/10.1180/mgm.2019.68
  29. Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Vlasenko N.S. // Mineral. Mag. 2020. V. 84. P. 283. https://doi.org/10.1180/mgm.2019.69
  30. Зубкова Н.В., Пеков И.В., Агаханов А.А. и др. // Кристаллография. 2021. Т. 66. С. 51. https://doi.org/10.31857/S0023476121010239
  31. Reynaud M., Barpanda P., Rousse G. et al. // Solid State Sci. 2012. V. 14. P. 15. https://doi.org/10.1016/j.solidstatesciences.2011.09.004
  32. Pekov I.V., Krzhizhanovskaya M.G., Yapaskurt V.O. et al. // Eur. J. Mineral. 2015. V. 27. P. 575. https://doi.org/ 10.1127/ejm/2015/0027-2457
  33. Pekov I.V., Britvin S.N., Bulakh M.O. et al. // Eur. J. Mineral. 2024. V. 36. P. 917. https://doi.org/ 10.5194/ejm-36-917-2024
  34. Pekov I.V., Zubkova N.V., Britvin S.N. et al. // Eur. J. Mineral. 2016. V. 28. P. 53. https://doi.org/10.1127/ejm/2015/0027-2471
  35. Pekov I.V., Zelenski M.E., Zubkova N.V. et al. // Am. Mineral. 2012. V. 97. P. 1788. https://doi.org/10.2138/am.2012.4104
  36. Schneider W. // Neues Jb. Mineral. Mh. 1967. P. 284.
  37. Schneider W. // Neues Jb. Mineral. Mh. 1969. P. 58.
  38. Demartin F., Gramaccioli C.M., Campostrini I. et al. // Am. Mineral. 2010. V. 95. P. 382. https://doi.org/ 10.2138/am.2010.3337
  39. Siidra O.I., Nazarchuk E.V., Lukina E.A. et al. // Mineral. Mag. 2018. V. 82. P. 1079. https://doi.org/ 10.1180/minmag.2017.081.084
  40. Giacovazzo C., Scandale E., Scordari F. // Z. Kristallogr. 1976. V. 144. P. 226. https://doi.org/10.1524/zkri.1976.144.1-6.226
  41. Demartin F., Campostrini I., Castellano C. et al. // Mineral. Mag. 2012. V. 76. P. 2773. https://doi.org/10.1180/minmag.2012.076.7.10
  42. Scordari F., Stasi F. // Neues Jb. Mineral. Mh. 1990. P. 241.
  43. Siidra O.I., Borisov A.S., Lukina E.A. // Phys. Chem. Min. 2019. V. 46. P. 403. https://doi.org/10.1007/s00269-018-1011-9
  44. Siidra O.I., Nazarchuk E.V., Zaitsev A.N. et al. // Eur. J. Mineral. 2017. V. 29. P. 499. https://doi.org/10.1127/ejm/2017/0029-2619
  45. Starova G.L., Filatov S.K., Fundamensky V.S., Vergasova L.P. // Mineral. Mag. 1991. V. 55. P. 613. https://doi.org/10.1180/minmag.1991.055.381.14
  46. Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. // Eur. J. Mineral. 2018. V. 30. P. 593. https://doi.org/10.1127/ejm/2018/0030-2725
  47. Pekov I.V., Zubkova N.V., Yapaskurt V.O. et al. // Can. Mineral. 2014. V. 52. P. 699. https://doi.org/10.3749/canmin.1400018
  48. Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. // Can. Mineral. 2020. V. 58. P. 625. https://doi.org/10.3749/canmin.2000032
  49. Gorskaya M.G., Filatov S.K., Rozhdestvenskaya I.V., Vergasova L.P. // Mineral. Mag. 1992. V. 56. P. 411. https://doi.org/10.1180/minmag.1992.056.384.14
  50. Кривовичев С.В., Филатов С.К., Черепанский П.Н. // Записки Рос. минерал. о-ва. 2008. Т. 137. С. 114.
  51. Pekov I.V., Britvin S.N., Agakhanov A.A. et al. // Eur. J. Mineral. 2019. V. 31. P. 1025. https://doi.org/10.1127/ejm/2019/0031-2887
  52. Varaksina T.V., Fundamensky V.S., Filatov S.K., Vergasova L.P. // Mineral. Mag. 1990. V. 54. P. 613. https://doi.org/10.1180/minmag.1990.054.377.14
  53. Effenberger H., Zemann J. // Mineral. Mag. 1984. V. 48. P. 541. https://doi.org/10.1180/minmag.1984.048.349.10
  54. Pertlik F., Zemann J. // Mineral. Petrol. 1988. V. 38. P. 291. https://doi.org/10.1007/BF01167095
  55. Попова В.И., Попов В.А., Рудашевский Н.С. и др. // Записки Всесоюз. минерал. о-ва. 1987. Т. 116. С. 358.
  56. Pekov I.V., Zubkova N.V., Yapaskurt V.O. et al. // Mineral. Petrol. 2023. V. 117. P. 247. https://doi.org/10.1007/s00710-022-00803-0
  57. Pautov L.A., Mirakov M.A., Siidra O.I. et al. // Mineral. Mag. 2020. V. 84. P. 455. https://doi.org/10.1180/mgm.2020.22
  58. Мираков М.А., Паутов Л.А., Сийдра О.И. и др. // Записки Рос. минерал. о-ва. 2023. Т. 152. С. 18. https://doi.org/10.31857/S0869605523010082
  59. Kemp S.J., Rushton J.C., Horstwood M.S.A., Nénert G. // Am. Mineral. 2018. V. 103. P. 1136. https://doi.org/10.2138/am-2018-6194
  60. Fanfani L., Giuseppetti G., Tadini C., Zanazzi P.F. // Mineral. Mag. 1980. V. 43. P. 753. https://doi.org/10.1180/minmag.1980.043.330.08
  61. Pabst A. // Z. Kristallogr. 1934. B. 89. S. 514. https://doi.org/10.1524/zkri.1934.89.1.514
  62. Fanfani L., Nunzi A., Zanazzi P.F., Zanzari A.R. // Mineral. Mag. 1975. V. 40. P. 357. https://doi.org/10.1180/minmag.1975.040.312.04
  63. Avdontceva M.S., Zolotarev A.A., Shablinskii A.P. et al. // Symmetry. 2023. V. 15. P. 1871. https://doi.org/10.3390/sym15101871
  64. Fanfani L., Nunzi A., Zanazzi P.F. et al. // Mineral. Mag. 1975. V. 40. P. 131. https://doi.org/10.1180/minmag.1975.040.310.03
  65. Shi N., Ma Z. // Kexue Tongbao. 1987. V. 32. P. 478. (in Chinese).
  66. Giuseppetti G., Mazzi F., Tadini C. // Neues Jb. Mineral. Mh. 1988. P. 203.
  67. Araki T., Zoltai T. // Am. Mineral. 1973. V. 58. P. 799
  68. Ericksen G.E., Evans H.T., Jr., Mrose M.E. et al. // Am. Mineral. 1989. V. 74. P. 1207.
  69. Пеков И.В., Агаханов А.А., Зубкова Н.В. и др. // Геология и геофизика. 2020. Т. 61. С. 826. https://doi.org/10.15372/GiG2019167
  70. Валяшко М.Г. Геохимические закономерности формирования месторождений калийных солей. М.: Изд-во МГУ, 1962. 397 с.
  71. Бокий Г.Б., Горогоцкая Л.И. // Журн. структур. химии. 1969. Т. 10. С. 624.
  72. Sabelli C., Trosti-Ferroni R. // Periodico Mineral. 1985. V. 54. P. 1.
  73. Расцветаева Р.К., Пущаровский Д.Ю. // Итоги науки и техники. Сер. Кристаллохимия. 1989. Т. 23. 172 с.
  74. Pushcharovsky D.Yu., Lima-de-Faria J., Rastsvetaeva R.K. // Z. Kristallogr. 1998. V. 213. P. 141. https://doi.org/10.1524/zkri.1998.213.3.141
  75. Krivovichev S.V. // Z. Kristallogr. 2008. V. 223. P. 109. https://doi.org/10.1524/zkri.2008.0008
  76. Pekov I.V., Zubkova N.V., Pushcharovsky D.Yu. // Acta Cryst. B. 2018. V. 74. P. 502. https://doi.org/10.1107/S2052520618014403
  77. Лазоряк Б.И. // Успехи химии. 1996. Т. 65. С. 307. https://doi.org/10.1070/RC1996v065n04ABEH000211
  78. Nikolova R., Kostov-Kytin V. // Bulg. Chem. Commun. 2013. V. 45. № 4. P. 418. http://www.bcc.bas.bg/
  79. Dessureault Y., Sangster J., Pelton A.D. // J. Electrochem. Soc. 1990. V. 137. P. 2941. https://doi.org/10.1149/1.2087103
  80. Shchipalkina N.V., Pekov I.V., Britvin S.N. et al. // Can. Mineral. 2021. V. 59. P. 713. https://doi.org/10.3749/canmin.2000105
  81. Shchipalkina N.V., Koshlyakova N.N., Pekov I.V. et al. // Can. J. Mineral. Petrol. 2023. V. 61. P. 609. https://doi.org/10.3749/2200062
  82. Белоусова М.Г., Сапрыкина О.Ю., Бубнова Р.С. и др. // Вулканология и сейсмология. 2021. № 1. С. 57. https://doi.org/10.31857/S0203030620060127
  83. Шорец О.Ю., Филатов С.К., Фирсова В.А., Бубнова Р.С. // Физика и химия стекла. 2021. Т. 47. С. 237. https://doi.org/10.31857/S013266512102013X
  84. Shablinskii A., Bubnova R., Shorets O. et al. // Crystals. 2023. V. 14. Р. 27. https://doi.org/10.3390/cryst14010027
  85. Shablinskii A.P., Filatov S.K., Biryukov Ya. P. // Phys. Chem. Miner. 2023. V. 50. Р. 30. https://doi.org/10.1007/s00269-023-01253-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heteropolyhedral chains in the structures of chlorothionite K2Cu(SO4)Cl2 (a), wulfite K3NaCu4O2(SO4)4 (b), parawulfite K5Na3Cu8O4(SO4)8 (c), eleomelanite (K2Pb) Cu4O2(SO4)4 (d), klyuchevskite K3Cu3Fe3+O2(SO4)4 (d), aluminoklyuchevskite K3Cu3AlO2(SO4)4 (f), pyipite K4NaCu4O2(SO4)4Cl (g) and canthorite K2NaMg(SO4)2F (h).

Download (57KB)
3. Fig. 2. Heteropolyhedral layers in the structures of glassite KAl(SO4)2 (a), yavapayite KFe(SO4)2 and eldfellite NaFe(SO4)2 (b), vanthoffite Na6Mg(SO4)4 (c), belousovite KZn(SO4)Cl (d), euchlorin KNaCu3O(SO4)3 and structurally related puninite Na2Cu3O(SO4)3 and fedotovite K2Cu3O(SO4)3 (d), elasmochloite Na3Cu6BiO4(SO4)5 (e), nishanbaevite KAl2O(AsO4)(SO4) (g) and hasanovite KNa(MoO2)(SO4)2 (h).

Download (117KB)
4. Rice. 3. Heteropolyhedral frameworks in the structures of saranchinite Na2Cu(SO4)2 (a), langbeinite K2Mg2(SO4)3 (similar in the structures of calciolangbeinite-C K2Ca2(SO4)3 and manganolangbeinite K2Mn2(SO4)3) (b), cuprovolunskiite Na4Cu(SO4)3 (c), itelmenite Na4Mg3Cu3(SO4)8 (g), koryakite NaKMg2Al2(SO4)6 (e), phyloxenite (K,Na,Pb)4(Na,Ca)2(Mg,Cu)3(Fe3+ 0.5 Al0.5)(SO4)8 (f), kononovite NaMg(SO4)F (g), krasheninnikovite KNa2CaMg(SO4)3F (h), cryptochalcite K2Cu5O(SO4)5 and cesiodymite CsKCu5O(SO4)5 (i), Kamchatkite KCu3O(SO4)2Cl (k), nabocoite KCu6CuTe4+O4(SO4)5Cl and, presumably, atlasovite KCu6Fe3+BiO4(SO4)5Cl) (l), falgarite K4(V+4O)3(SO4)5 (m).

Download (171KB)
5. Fig. 4. General view of the crystal structures of metathenardite [8], aphthitalite [9], natroaphthitalite and belomarinaite [10]. Small balls show oxygen atoms, arrows show the directions of solid-phase transformations in the studied samples.

Download (49KB)
6. Fig. 5. Interactions of minerals formed by decomposition in aphthitalite-like sulfates from the Arsenatnaya fumarole deposits, Tolbachik volcano, Kamchatka: a – metathenardite (M)–vanthoffite (V); b – metathenardite (M)–belomarinaite (B); c – metathenardite (M)–natroaphthitalite (N); g – arcanite (A1)–aphthitalite (A2); d – cuprovobilskyite (C)–saranchinaite (S); e – metathenardite (M)–Zn-bearing cuprovobilskyite (C). Polished sections. Images were obtained using a scanning electron microscope in the reflected electron detection mode.

Download (131KB)

Note

К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».