ZnO microtubes: formation mechanism and whispering-gallery mode lasing
- 作者: Tarasov А.P.1, Zadorozhnaya L.A.1, Nabatov B.V.1, Kanevsky V.M.1
-
隶属关系:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- 期: 卷 70, 编号 1 (2025)
- 页面: 35-41
- 栏目: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://journals.rcsi.science/0023-4761/article/view/286238
- DOI: https://doi.org/10.31857/S0023476125010058
- EDN: https://elibrary.ru/ITUTWB
- ID: 286238
如何引用文章
详细
The luminescent and laser properties of ZnO microtubes synthesized by a modified thermal evaporation method were studied using photoluminescence spectroscopy. It was shown that whispering gallery modes are responsible for lasing in the near UV range. The possibility of achieving low lasing thresholds (down to ~ 8 kW/cm2) and high optical quality factors (over 3900) was demonstrated. A mechanism for the formation of such microcrystals was proposed, based on the assumption of simultaneous growth and etching along the [0001] crystallographic direction.
全文:

作者简介
А. Tarasov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
编辑信件的主要联系方式.
Email: tarasov.a@crys.ras.ru
俄罗斯联邦, Moscow
L. Zadorozhnaya
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
俄罗斯联邦, Moscow
B. Nabatov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
俄罗斯联邦, Moscow
V. Kanevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
俄罗斯联邦, Moscow
参考
- Morkoc H., Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: Wiley-VCH, 2009.
- Sharma D.K., Shukla S., Sharma K.K., Kumar V. // Mater. Today. 2022. V. 49. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
- Klingshirn C.F. Semiconductor Optics. Berlin: Springer, 2012.
- Srivastava V., Gusain D., Sharma Y.C. // Ceram. Int. 2013. V. 39. P. 9803. https://doi.org/10.1016/j.ceramint.2013.04.110
- Oprea O., Andronescu E., Ficai D. et al. // Curr. Org. Chem. 2014. V. 18. P. 192.
- Uikey P., Vishwakarma K. // Int. J. Emerg. Tech. Comp. Sci. Electron. 2016. V. 21. P. 239.
- Di Mauro A., Fragalà M.E., Privitera V., Impellizzeri G. // Mater. Sci. Semicond. Process. 2017. V. 69. P. 44. https://doi.org/10.1016/j.mssp.2017.03.029
- Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.
- Znaidi L., Illia G.S, Benyahia S. et al. // Thin Solid Films. 2003. V. 428. P. 257. https://doi.org/10.1016/S0040-6090(02)01219-1
- Dong H., Zhou B., Li J. et al. // J. Materiomics. 2017. V. 3. P. 255. https://doi.org/10.1016/j.jmat.2017.06.001
- Tashiro A., Adachi Y., Uchino T. // J. Appl. Phys. 2023. V. 133. P. 221101. https://doi.org/10.1063/5.0142719
- Xu C., Dai J., Zhu G. et al. // Las. Photon. Rev. 2014. V. 8. P. 469. https://doi.org/10.1002/lpor.20130012
- Yang Y.D., Tang M., Wang F.L. et al. // Photonics Res. 2019. V. 7. P. 594. https://doi.org/10.1364/PRJ.7.000594
- Chen R., Ling B., Sun X.W., Sun H.D. // Adv. Mater. 2011. V. 23. P. 2199. https://doi.org/10.1002/adma.201100423
- Michalsky T., Wille M., Dietrich C.P. et al. // Appl. Phys. Lett. 2014. V. 105. P. 211106. https://doi.org/10.1063/1.4902898
- Qin F., Xu C., Lei D.Y. et al. // ACS Photonics. 2018. V. 5. P. 2313. https://doi.org/10.1021/acsphotonics.8b00128
- Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Photonics. 2022. V. 9. P. 871. https://doi.org/10.3390/photonics9110871
- Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
- Тарасов А.П., Лавриков А.С., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2022. Т. 115. С. 554. https://doi.org/10.31857/S1234567822090026
- Tarasov A.P., Zadorozhnaya L.A., Kanevsky V.M. // J. Appl. Phys. 2024. V. 136. P. 073102. https://doi.org/10.1063/5.0214420
- Li L.E., Demianets L.N. // Opt. Mater. 2008. V. 30. P. 1074. https://doi.org/10.1016/j.optmat.2007.05.013
- Демьянец Л.Н., Ли Л.Е., Лавриков А.С., Никитин С.В. // Кристаллография. 2010. Т. 55. С. 149.
- Zadorozhnaya L.A., Tarasov A.P., Lavrikov A.S., Kanevsky V.M. // Comp. Opt. 2024. V. 48. P. 696. https://doi.org/10.18287/2412-6179-CO-1414
- Dong H., Sun L., Xie W. et al. // J. Phys. Chem. C. 2010. V. 114. P. 17369. https://doi.org/10.1021/jp1047908
- Тарасов А.П., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2024. Т. 119. С. 875. https://dx.doi.org/10.31857/S1234567824120024
- Wagner R.S. // J. Crystal Growth. 1968. V. 3/4. P. 159.
- Kaldis E. // Crystal Growth and Characterization. Amsterdam: North Holland, 1975.
- Sharma R.B. // J. Appl. Phys. 1970. V. 41. P. 1866. https://doi.org/10.1063/1.1659122
- Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Materials. 2022. V. 15. P. 8723. https://doi.org/10.3390/ma15248723
- Tarasov A.P., Ismailov A.M., Gadzhiev M.K. et al. // Photonics. 2023. V. 10. P. 1354. https://doi.org/10.3390/photonics10121354
- Ozgur U., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 41301. https://doi.org/10.1063/1.1992666
- Ghosh M., Ningthoujam R.S., Vatsa R.K. et al. // J. Appl. Phys. 2011. V. 110. P. 054309. https://doi.org/10.1063/1.3632059
- Zhang Z., Yates Jr. J.T. // Chem. Rev. 2012. V. 112. P. 5520. https://doi.org/10.1021/cr3000626
- Guo B., Qiu Z.R., Wong K.S. // Appl. Phys. Lett. 2003. V. 82. P. 2290. https://doi.org/10.1063/1.1566482
- Dai J., Xu C.X., Wu P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 011101. https://doi.org/10.1063/1.3460281
- Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
- Zimmler M.A., Bao J., Capasso F. et al. // Appl. Phys. Lett. 2008. V. 93. P. 051101. https://doi.org/10.1063/1.2965797
- Czekalla C., Sturm C., Schmidt-Grund R. et al. // Appl. Phys. Lett. 2008. V. 92. P. 241102. https://doi.org/10.1063/1.2946660
- Wiersig J. // Phys. Rev. A. 2003. V. 67. P. 023807. https://doi.org/10.1103/PhysRevA.67.023807
- Liu J., Lee S., Ahn Y. et al. // Appl. Phys. Lett. 2008. V. 92. P. 263102. https://doi.org/10.1063/1.2952763
补充文件
