The influence of chemical structure spacings on the fluorocopolymers nano-organization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In ternary fluoropolymers Viton GFLT 600S and Viton GFLT 200S, more types of nanoformations with the size of 3–80 nm are found than in double SCF-26 and SCF-32, while their prehistory changes according to the X-ray diffraction analysis data in the region of large angles. This process is more influenced by the chemical structure of the junctions in the macromolecules than by the molecular weight. The complex and unequal character of change of dynamic viscosity of fluoropolymers with temperature increase is caused by multiple phase transitions. It is shown that fluorocarbon rubber SKF-32 does not transition to the viscous-fluid state up to ~190°C in contrast to three fluoropolymers due to intermolecular nanoformations of 5 nm in size, the strength of which is significantly higher than nanoformations of 3–4 nm in the latter. It was found that the rotational mobility of the TEMPO radical is determined not so much by the intermolecular distances in the disordered part of the copolymers as by the flexibility of the passing chains connecting the ordered formations into a single system.

Full Text

Restricted Access

About the authors

L. V. Sokolova

MIREA – Russian Technological University

Author for correspondence.
Email: sokolova_mchti@mail.ru
Russian Federation, 119454 Moscow

D. S. Pronin

MIREA – Russian Technological University

Email: sokolova_mchti@mail.ru
Russian Federation, 119454 Moscow

E. D. Politova

N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: sokolova_mchti@mail.ru
Russian Federation, 119991 Moscow

References

  1. Аржаков М.С. Релаксационные явления в полимерах. Montreal: Accent Graphics Communication, 2018. 136 с.
  2. Марк Дж., Эрман Б., Эйринг Ф. Каучук и резина. Наука и технология. Долгопрудный: Интеллект, 2011. 768 с.
  3. Башоров М.Т., Козлов Г.В., Микитаев А.К. Наноструктуры и свойства аморфных стеклообразных полимеров. М.: РХТУ им. Д.И. Менделеева, 2010. 269 с.
  4. Волынский А.Л., Бакеев Н.Ф. Структурная самоорганизация аморфных полимеров. М.: ФИЗМАТЛИТ, 2005. 232 с.
  5. Kozlov G.V., Zaikov G.E. Structure of the Polymer Amorphous State. Leiden: Brill Academic Publishers, 2004. 465 р.
  6. Полимерные нанокомпозиты / Ред. Ю-Винг Май, Жон-Жен Ю. М.: Техносфера, 2011. 687 с.
  7. Гамлицкий Ю.А. // Каучук и резина. 2017. Т. 76. С. 308.
  8. Dupres S., Long D.R., Albony P.A. // Macromolecules. 2009. V. 42. P. 2634.
  9. Кузьмичева Г.М. // Тонкие химические технологии. 2015. Т. 10. № 2. С. 5.
  10. Малкин А.Я., Семаков А.В., Куличихин В.Г. // Высокомолекулярные соединения. 2010. Т. 52. С. 1879.
  11. Соколова Л.В. // Пластические массы. 2006. С. 13.
  12. Соколова Л.В. // Высокомолекулярные соединения. А. 2017. Т. 59. С. 318. http://doi.org/7868/S2308112017040113
  13. Соколова Л.В. // Высокомолекулярные соединения. В. 1994. Т. 36. № 5. С. 1737.
  14. Соколова Л.В., Евреинов Ю.В. // Высокомолекулярные соединения. А. 1993. Т. 35. № 5. С. 244.
  15. Нудельман З.Н. Фторкаучуки: основы, переработка, применение. М.: ОООПИФРИАС, 2007. 384 с.
  16. Moore A.L. Fluoroelastomers Handbook. N.Y.: William Andrew, 2006. 366 р.
  17. Denis W.S., Scott T.L., Suresh S.L. Handbook of Fluoropolymer and Technology. N.Y.: Wiley, 2014. 648 p.
  18. Новицкая С.П., Нудельман З.Н., Донцов А.А. Фторэластомеры. М.: Химия, 1988. 240 с.
  19. Ebnesajjand S., Morgan R. // Fluoropolymer Additives. N.Y.: William Andrew, 2012. P. 298.
  20. Hilts J. // J. Anal. Appl. Pyrol. 2013. V. 6. № 2. P. 1.
  21. Уманский Я., Скаков Ю., Иванов А. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. 632 с.
  22. Морохов И.Д., Трусов Л.И., Лаповок В.Н. Физические явления в ультрадисперсных средах. М.: Энергоатомиздат, 1984. 228 с.
  23. Manalastas-Cantos К., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. № 2. P. 343. http://doi.org/10.1107/S1600576720013412
  24. Svergun D.I., Konarev P.V., Volkov V.V. et al. // J. Chem. Phys. 2000. V. 113. № 11. P. 1651. http://doi.org/10.1063/1.481954
  25. Dennis J.E., Gay D.M., Welsh R.E. // ACM Trans. Math. Soft. 1981. V. 7. № 3. P. 369. http://doi.org/10.1145/355958.355966
  26. Вассерман А.М., Коварский А.Л. Спиновые метки и зонды в физикохимии полимеров. М.: Наука, 1986. 244 с.
  27. Budil D.E., Lee S., Saxena S., Freed J.H. // J. Magn. Res. A. 1996. V. 120. P. 155.
  28. Тимофеев В.П., Мишарин А.Ю., Ткачев Я.В. // Биофизика. 2011. Т. 56. № 3. С. 420.
  29. Соколова Л.В., Лосев А.В., Политова Е.Д. // Высокомолекулярные соединения. А. 2020. Т. 62. № 2. С. 98. http://doi.org/1031857/S23081120020066
  30. Ольхов Ю.А., Аллаяров С.Р., Никольский В.Г. // Химия высоких энергий. 2016. Т. 50. № 3. С. 183.
  31. Глесстон С., Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций. М.: ИЛ, 1948. 583 с.
  32. Лебедев Я.С., Цветков Ю.Д., Воеводский В.В. // Кинетика и катализ. 1960. № 3. С. 496.
  33. Соколова Л.В., Матухина Е.В., Ливанова Н.М. // Высокомолекулярные соединения. А. 2010. Т. 52. № 5. С. 787.
  34. Соколова Л.В., Непомнящий А.Ф., Татаринов П.А. // Высокомолекулярные соединения. А. 2017. Т. 59. № 1. С. 27. http://doi.org/10.7868/S2308112017010151
  35. Каргин В.А., Слонимский Г.Л. Краткие очерки по физико-химии полимеров. М.: Химия, 1967. 231 с.
  36. Соколова Л.В., Базарова В.Е. // Бутлеровские сообщения. 2023. Т. 73. № 1. С. 62. http://doi.org/10.37952/ROI-jbc-01/23-73-162
  37. Михеев А.И. Автореферат “Надмолекулярная организация эластомеров и пространственно-сшитых полимеров” дис. … канд. хим. наук. М.: МИТХТ, 1981.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of the initial samples (1) SKF-26 (a), SKF-32 (b), V-60 (c) and V-20 (d), as well as those obtained after heat treatment at 90 (2, 3), 140 (4), 170 (5), 180 (6) and 200°C (7) in a press (2, 5, 6) and in a free state (3, 4, 7).

Download (408KB)
3. Fig. 2. Temperature dependences of the dynamic viscosity of SKF-26 (1), SKF-32 (2), B-60 (3) and B-20 (4). Deformation amplitudes: 0.5° (a), 6.95° (b). Frequency 0.8 Hz.

Download (134KB)
4. Fig. 3. Temperature dependences of the correlation time of the rotational mobility of the TEMPO radical in SKF-26 (1), SKF-32 (2), B-60 (3) and B-20 (4).

Download (85KB)
5. Fig. 4. Volume distribution by size of fluororubber nanoformations: SKF-26 (1), SKF-32 (2).

Download (50KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».