Fluorine conducting ceramics based on BiF3

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The temperature dependence of the ionic conductivity of a ceramic sample of the Bi0.94Ba0.06F2.94 solid electrolyte was studied using impedance spectroscopy in the temperature range 293–473 K. The ceramics was obtained by solid-phase synthesis (873 K, 3 h) in a closed Cu ampoule and is a heterovalent solid solution of tysonite structure (space group) with lattice parameters a = 7.1482(8) and c = 7.3279(5) Å. The conductivity value at room temperature and its activation enthalpy are equal to σcer = 3 × 10–5 S/cm and DHs = 0.49 ± 0.05 eV, respectively. The ion-conducting properties of isostructural solid electrolytes Bi1–yBayF3–y and La1–yBayF3–y with similar values of ionic radii of matrix cations (1.17 and 1.16 Å for Bi3+ and La3+, respectively) are compared. The conductivity at 473 K of Bi0.94Ba0.06F2.94 ceramics exceeds the electrical conductivity of ceramics and La0.95Ba0.05F2.95 single crystals by 6 and 3.3 times, respectively.

全文:

受限制的访问

作者简介

N. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: nsorokin1@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
  2. Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. P. 2453.
  3. Сорокин Н.И., Каримов Д.Н. // Кристаллография. 2023. Т. 68. № 2. С. 272. https://doi.org/10.31857/S0023476123020182
  4. Greis O., Martinez-Ripoll M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 1. S. 105. https://doi.org/10.1002/zaac.19774360112
  5. Shafer M.W., Chandrashekhar G.N., Figat R.A. // Solid State Ionics. 1981. V. 5. P. 633. https://doi.org/10.1016/0167-2738(81)90334-9
  6. Ардашникова Е.И., Борзенкова М.П., Калинченко Ф.В., Новоселова А.В. // Журн. неорган. химии. 1981. Т. 26. № 7. С. 1727.
  7. Ardasnikova E.I., Prituzhalov V.A., Kutsenok I.V. // Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids / Ed. Tressaud A. Chippenham: John Wiley & Sons. 2010. P. 423.
  8. Свищев И.М., Ардашникова Е.И., Борзенкова М.П., Новоселова А.В. // Автор. свидетельство СССР. SU 1122963, 7.11.1984, Бюл. № 41.
  9. Baumgartner J.F., Krumeich F., Worle M. et al. // Commun. Chem. 2022. V. 5. P. 6. https://doi.org/10.1038/s42004-021-00622-y
  10. Liu T., Peng N., Zhang X. et al. // Energy Storage Mater. 2021. V. 42. P. 42. https://doi.org/10.1016/j.ensm.2019.03.028
  11. Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. № 11. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  12. Shimoda K., Minato T., Konishi H. et al. // J. Electroanal. Chem. 2021. V. 895. P. 115508. https://doi.org/10.1016/j.jelechem.2021.115508
  13. Reddy M.A., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
  14. Слободюк А.Б., Полянцев М.М., Гончарук В.К., Кавун В.Я. // Вестник ДВО РАН. 2021. № 5. С. 95. https://doi.org/10.37102/0869-7698_2021_219_05_08
  15. Konishi H., Minato T., Abe T., Ogumi Z. // ChemistrySelect. 2020. V. 5. P. 4943. https://doi.org/10.1002/slct.202000713
  16. Кавун В.Я., Полянцев М.М., Меркулов Е.Б., Гончарук В.К. // Журн. структур. химии. 2019. Т. 60. № 2. С. 231.
  17. Kavun V.Yu., Uvarov N.F., Slobodyuk A.B. et al. // J. Solid State Chem. 2018. V. 263. P. 203. https://doi.org/10.1016/j.jssc.2018.04.029
  18. Притужалов В.А., Ардашникова Е.А., Долгих В.А., Абакумов А.М. // Журн. неорган. химии. 2011. Т. 56. № 3. С. 355.
  19. Rhandour A., Reau J.M., Matar S. et al. // Mater. Res. Bull. 1985. V. 20. P. 1309.
  20. Reau J.M., Tian S.B., Rhandour A. et al. // Solid State Ionics. 1985. V. 15. P. 217.
  21. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
  22. Greis O., Martinez M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 9. S. 105.
  23. Cheetham A.B., Norman N. // Acta Chem. Scand. A. 1974. V. 28. P. 55.
  24. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  25. Мурин И.В., Амелин Ю.В. // Вест. Ленингр. ун-та. 1983. № 22. С. 97.
  26. Chable J., Dieudonne B., Body M. et al. // Dalton Trans. 2015. V. 44. P. 19625. https://doi.org/10.1039/c5dt02321a
  27. Bhatia H., Thieu D.T., Pohl H.P. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 23707.
  28. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // ФТТ. 1998. Т. 40. № 4. С. 658.
  29. Kroger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland. 1964. 1039 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Impedance plot and equivalent electrical circuit for the electrochemical system Ag|Bi0.94Ba0.06F2.94|Ag ceramics at 294 K. The numbers at the shaded points indicate the frequency in kHz. The total resistance of the ceramic sample is Rcer = Rig + Rgb = 6.5×104 Ohm (Rig << Rcer).

下载 (70KB)
3. Fig. 2. Concentration dependence of intragranular conductivity of Bi1–yBayF3–y polycrystals: 1 – data from the conducted study, 2 – data from [7, 18], 3 – data from [19].

下载 (65KB)
4. Fig. 3. Temperature dependences of the anionic conductivity of fluoride ceramics Bi0.94Ba0.06F2.94 in coordinates lgσT, 103/T: 1, 2 – first sample, 3, 4 – second sample, 1, 3 – heating, 2, 4 – cooling.

下载 (67KB)
5. Fig. 4. Temperature dependences of the anionic conductivity of fluoride materials in the coordinates lgσ, 103/T: 1 – Bi0.94Ba0.06F2.94 ceramics (heating), 2 – BiF3 polycrystal [3], 3 – Bi1–yKyF3–2y polycrystal [20], 4 – Bi1–yPbyF3–y polycrystal [25], 5 – La0.95Ba0.05F2.95 ceramics [26, 27], 6 – La0.95Ba0.05F2.95 single crystal [28].

下载 (78KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».