Polycrystalline methylammonium-lead bromide perovskite films for photonic metasurfaces
- Authors: Yurasik G.A.1, Kasyanova I.V.1, Artemov V.V.1, Ezhov A.A.1,2, Pavlov I.S.1, Antonov A.A.1, Long G.3, Gorkunov M.V.1,4
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- M.V. Lomonosov Moscow State University, Faculty of Physics
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University
- National Research Nuclear University “MEPhI”
- Issue: Vol 69, No 3 (2024)
- Pages: 461-469
- Section: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://journals.rcsi.science/0023-4761/article/view/263048
- DOI: https://doi.org/10.31857/S0023476124030119
- EDN: https://elibrary.ru/XOIZFD
- ID: 263048
Cite item
Abstract
Polycrystalline films of organo-inorganic perovskite semiconductors are promising as a foundation for creating functional optical metasurfaces. The requirements for film structural perfection, thickness uniformity, and defect-free characteristics are much more stringent compared to perovskite films for photovoltaics. This work presents the results of searching for optimal conditions for one-step synthesis of lead methylammonium bromide films using centrifugation, and describes the successful fabrication of subwavelength optical gratings from these films through focused ion beam processing. The measured spectra of light transmission through the gratings demonstrated their excellent optical quality and confirmed the possibility of creating semiconductor photon metasurfaces with submicrometer periodicity and high-Q dielectric resonances.
Full Text

About the authors
G. A. Yurasik
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow
I. V. Kasyanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow
V. V. Artemov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow
A. A. Ezhov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”;M.V. Lomonosov Moscow State University, Faculty of Physics
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow; Moscow
I. S. Pavlov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow
A. A. Antonov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow
Guankui Long
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University
Email: yurasik.georgy@yandex.ru
Taiwan, Province of China, Tianjin
M. V. Gorkunov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: yurasik.georgy@yandex.ru
Russian Federation, Moscow; Moscow
References
- Kim J.Y., Lee J.-W., Jung H.S.et al. // Chem. Rev. 2020. V. 120. № 15. P. 7867. https://doi.org/10.1021/acs.chemrev.0c00107
- Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. № 6364. P. 745. https://doi.org/10.1126/science.aam7093
- Berestennikov A.S., Voroshilov P.M., Makarov S.V., Kivshar Y.S. // Appl. Phys. Rev. 2019. V. 6. № 3. P. 031307. https://doi.org/10.1063/1.5107449
- Xiao M., Huang F., Huang W. et al. // Ang. Chem. Int. Ed. 2014. V. 53. № 37. P. 9898. https://doi.org/10.1002/anie.201405334
- Swain B.S., Lee J. // Physica E. 2021. V. 126. P. 114420. https://doi.org/10.1016/j.physe.2020.114420
- Long G., Adamo G., Tian J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1551. https://doi.org/10.1038/s41467-022-29253-0
- Saidaminov M.I., Abdelhady A.L., Murali B. et al. // Nat. Commun. 2015. V. 6. № 1. P. 7586. https://doi.org/10.1038/ncomms8586
- Gorkunov M.V., Mamonova A.V., Kasyanova I.V. et al. // Nanophotonics. 2022. V. 11. № 17. P. 3901. https://doi.org/10.1515/nanoph-2022-0091
- Stöhr J., Samant M.G., Cossy-Favre A. et al. // Macromolecules. 1998. V. 31. № 6. P. 1942. https://doi.org/10.1021/ma9711708
- Shen H., Nan R., Jian Z., Li X. // J. Mater. Sci. 2019. V. 54. № 17. P. 11596. https://doi.org/10.1007/s10853-019-03710-6
- Beadie G., Brindza M., Flynn R.A. et al. // Appl. Opt. 2015. V. 54. № 31. P. F139. https://doi.org/10.1364/AO.54.00F139
- Ishteev A., Konstantinova K., Ermolaev G. et al. // J. Mater. Chem. C. 2022. V. 10. № 15. P. 5821. https://doi.org/10.1039/D2TC00128D
- König T.A.F., Ledin P.A., Kerszulis J. et al. // ACS Nano. 2014. V. 8. № 6. P. 6182. https://doi.org/10.1021/nn501601e
- Rubin M. // Sol. En. Mater. 1985. V. 12. № 4. P. 275. https://doi.org/10.1016/0165-1633(85)90052-8
- Elliott R.J. // Phys. Rev. 1957. V. 108. № 6. P. 1384. https://doi.org/10.1103/PhysRev.108.1384
- Ruf F., Aygüler M.F., Giesbrecht N. et al. // APL Maters. 2019. V. 7. № 3. P. 031113. https://doi.org/10.1063/1.5083792
- Kühner L., Wendisch F.J., Antonov A.A. et al. // Light Sci. Appl. 2023. V. 12. № 1. P. 250. https://doi.org/10.1038/s41377-023-01295-z
- Rubanov S., Munroe P.R. // J. Microsc. 2004. V. 214. № 3. P. 213. https://doi.org/10.1111/j.0022-2720.2004.01327.x
- Gorkunov M.V., Rogov O.Y., Kondratov A.V. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11623. https://doi.org/10.1038/s41598-018-29977-4
- Koshelev K., Kivshar Y. // ACS Photonics. 2021. V. 8. № 1. P. 102. https://doi.org/10.1021/acsphotonics.0c01315
Supplementary files
