Influence of the domain structure of LaBGeO₅ polar crystals on their gyrotropic properties
- Authors: Konstantinova A.F.1, Golovina T.G.1, Mareev E.I.1, Butashin A.V.1, Volchkov I.S.1, Gainutdinov R.V.1, Asharchuk N.M.1, Kasimova V.M.2, Zabelina E.V.2, Kozlova N.S.2
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- National University of Science and Technology MISIS
- Issue: Vol 69, No 3 (2024)
- Pages: 429-437
- Section: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://journals.rcsi.science/0023-4761/article/view/263042
- DOI: https://doi.org/10.31857/S0023476124030079
- EDN: https://elibrary.ru/XOOWZP
- ID: 263042
Cite item
Abstract
The spectra of transmission coefficients and absorption indices of monodomain and polydomain LaBGeO₅ samples were measured. It is shown that for a more accurate measurement of the rotation of the plane of polarization of light, it is necessary to use the transmission coefficient spectra not only for parallel and crossed polarizers, but also at other angles between them. The obtained values of p for both samples are described quite well by a single variance using the Drude formula. This is consistent with the fact that the value of p should not change with monodomenization of the crystal at a given symmetry (P31 in the ferroelectric phase and P3121 in the paraelectric phase). It is shown that the generation of the second harmonic of the Cherenkov type is observed only in a polydomain sample, while the radiation of the second harmonic is not polarized. The domain structure of the samples was observed by scanning electron microscopy and piezoelectric force microscopy. For a polydomain sample, the presence of a labyrinthine domain structure was shown, for a monodomain sample, no contrast changes were observed within the scanning area.
Full Text

About the authors
A. F. Konstantinova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
T. G. Golovina
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
E. I. Mareev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
A. V. Butashin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
I. S. Volchkov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
R. V. Gainutdinov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
N. M. Asharchuk
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Russian Federation, 119333 Moscow
V. M. Kasimova
National University of Science and Technology MISIS
Email: tatgolovina@mail.ru
Russian Federation, 119049 Moscow
E. V. Zabelina
National University of Science and Technology MISIS
Email: tatgolovina@mail.ru
Russian Federation, 119049 Moscow
N. S. Kozlova
National University of Science and Technology MISIS
Email: tatgolovina@mail.ru
Russian Federation, 119049 Moscow
References
- Каминский А.А., Буташин А.В., Милль Б.В., Белоконева Е.Л. // Изв. АН СССР. Неорган. матер. 1990. Т. 26. № 5. C. 1105.
- Стефанович С.Ю., Милль Б.В., Буташин А.В. // Кристаллография. 1992. Т. 37. Вып. 4. С. 965.
- Belokoneva E.L., David W.I.F., Forsyth J.B., Knight K.S. // J. Phys.: Condens. Matter. 1997. V. 9. P. 3503. https://doi.org/10.1088/0953-8984/9/17/002
- Uesu У., Horiuchi N., Osakabe Е. et al. // J. Phys. Soc. Jpn. 1993. V. 62. Р. 2522. https://doi.org/10.1143/JPSJ.62.2522
- Onodera А., Strukov В.А., Belov А.А. et al. // J. Phys. Soc. Jpn. 1993. V. 62. Р. 4311. https://doi.org/10.1143/JPSJ.62.4311
- Милов Е.В., Струков Б.А. // ФТТ. 2001. Т. 43. С. 495.
- Strukov В.А., Milov Е.Н., Milov V.N. et al. // Ferroelectrics. 2005. V. 314. Р. 105. https://doi.org/10.1080/00150190590926247
- Akhmatkhanov A., Plashinnov C., Nebogatikov M. et al. // Crystals. 2020. V. 10. № 7. P. 583. https://doi.org/10.3390/cryst10070583
- Kaminskii A.A., Butashin A.V., Maslyanitsin I.A. et al. // Phys. Status Solidi. A. 1991. V. 125. № 2. P. 671.
- Kaminsky W. // Rep. Prog. Phys. 2000. V. 63. P. 1575. https://doi.org/10.1088/0034-4885/63/10/201
- Каминский А.А., Нишиока Х., Уеда К. и др. // Квантовая электроника. 1996. Т. 23. № 5. С. 391.
- Hirohashi J., Imai K., Watanabe S. et al. // Proc. SPIE10902, Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII. 2019. P. 1090206. https://doi.org/10.1117/12.2514795
- Универсальная измерительная приставка Agilent Cary Universal Measurement Accessory (UMA) // Agilent Technologies. http://www.agilent.com/cs/library/technicaloverviews/public/5991-2529RU.pdf
- Шубников А.В., Флинт Е.Е., Бокий Г.Б. Основы кристаллографии. М.: Изд-во АН СССР, 1940. 488 с.
- Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
- Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
- Golovina T.G., Konstantinova A.F., Dudka A.P. et al. // Crystallography Reports. 2023. V. 68. № 5. P. 732. https://doi.org/10.1134/S106377452360045X
- Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
- Шувалов Л.А., Иванов Н.Р. // Кристаллография. 1964. Т. 9. Вып. 2. С. 363.
- Головина Т.Г., Константинова А.Ф., Набатов Б.В., Евдищенко Е.А. // Кристаллография. 2018. Т. 63. № 6. С. 921. https://doi.org/10.1134/S0023476118060139
- Ayoub M., Roedig P., Koynov K. et al. // Opt. Express. 2013. V. 21. № 7. P. 20117. https://doi.org/10.1364/OE.21.008220
- Sheng Y., Saltiel S.M., Krolikowski W. et al. // Opt. Lett. 2010. V. 35. № 9. P. 1317. https://doi.org/10.1364/OL.35.001317
- Sheng Y., Roppo V., Kalinowski Ks., Krolikowski W. // Opt. Lett. 2012. V. 37. № 18. P. 3864. https://doi.org/10.1364/OL.37.003864
- Roede E.D., Mosberg A.B., Evans D.M. et al. // APL Mater. 2021. V. 9. № 2. P. 021105. https://doi.org/10.1063/5.0038909
- Kholkin A.L., Kalinin S.V., Roelofs A., Gruverman A. // Scanning Probe Microscopy. Electricaland Electromechanical Phenomena at the Nanoscale / Eds. Kalinin S.V., Gruverman A. New York: Springer, 2007. P. 173.
- Калинин А.С. Методы атомно-силовой микроскопии для неразрушающего анализа электромеханических свойств наноструктур. Дис. … канд. физ.-мат. наук. М.: НИЦ КИ, 2017. 104 с.
Supplementary files
