Gold alloying of ZnO crystals during their growth via the vapor-liquid-solid mechanism doping ZnO crystals with gold during their growth by the vapor-liquid-crystal method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Arrays of ZnO microcrystals were grown on a silicon substrate (111) by applying the vapor deposition method with the vapor-liquid-crystal mechanism, where the liquid phase was gold. Differences in the obtained crystals at growth times of 5, 10, and 15 minutes are described. The lattice parameters of the microcrystals were calculated as the growth time increased: a = 3.316, c = 5.281; a = 3.291, c = 5.270; a = 3.286, c = 5.258 Å. The change in Au content in the microcrystals as they grew was determined, from 0.520 at. % at the substrate to 0.035 at. % on the crystal surfaces after 15 minutes of growth. Maps of the atomic element distribution are presented, and an the differences in lattice parameters of the obtained crystals compared to standard values are explained.

Full Text

Restricted Access

About the authors

P. L. Podkur

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
Russian Federation, Moscow

I. S. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: volch2862@gmail.com
Russian Federation, Moscow

L. A. Zadorozhnaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
Russian Federation, Moscow

V. M. Kanevskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
Russian Federation, Moscow

References

  1. Jayaprakash N., Suresh R., Rajalakshmi S. et al. // Mater. Technol. 2019. V. 35. P. 112. https://doi.org/10.1080/10667857.2019.1659533
  2. Абдуев А.Х., Ахмедов А.К., Асваров А.Ш. // Письма в ЖТФ. 2014. Т. 40. С. 71.
  3. Наумов А.В., Плеханов С.И. // Энергия: экономика, техника, экология. 2013. Т. 7. С. 14.
  4. Rai P., Raj S., Ko K.-J. et al. // Sens. Actuators B Chem. 2013. V. 178. P. 107. https://doi.org/10.1016/j.snb.2012.12.031
  5. Zhao X., Lou F., Li M. et al. // Ceram. Int. 2014. V. 40. P. 5507. https://doi.org/10.1016/j.ceramint.2013.10.140
  6. Pagano R., Ingrosso C., Giancane G. et al. // Materials. 2020. V. 13. P. 2938. https://doi.org/10.3390/ma13132938
  7. Ohtomo A., Kawasaki M., Ohkubo I. et al. // Appl. Phys. Lett. 1999. V. 75. P. 980. https://doi.org/10.1063/1.124573
  8. Брискина Ч.М., Маркушев В.М., Задорожная Л.А. и др. // Квантовая электроника. 2022. Т. 52. С. 676.
  9. Грузинцев А.Н., Волков В.Т., Емельченко Г.А. и др. // Физика и техника полупроводников. 2002. Т. 37. С. 330.
  10. Li Z., Wang C. One-Dimensional Nanostructures Electrospinning: Technique and Unique Nanofibers. New York, Dordrecht, London: Springer Berlin Heidelberg, 2013. 141 p. https://doi.org/10.1007/978-3-642-36427-3
  11. Ляпина О.А., Баранов А.Н., Панин Г.Н. и др. // Неорган. матер. 2008. Т. 44. С. 958.
  12. Islam M.R., Rahman M., Farhad S.F.U. et al. // Surf. Interfaces. 2019. V. 16. P. 120. https://doi.org/10.1016/j.surfin.2019.05.007
  13. Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
  14. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  15. Абдуев А.Х., Ахмедов А.К., Асваров А.Ш. и др. // Кристаллография. 2020. Т. 65. С. 489. https://doi.org/10.31857/S0023476120030029
  16. Yamamoto T., Katayama-Yoshida H. // Jpn. J. Appl. Phys. 1999. V. 38. P. L166. https://doi.org/10.1143/JJAP.38.L166
  17. Joseph M., Tabata H., Kawai T. // Jpn. J. Appl. Phys. 1999. V. 38. P. L1205. https://doi.org/10.1143/JJAP.38.L1205
  18. Minegishi K., Koiwai Y., Kikuchi Y. et al. // Jpn. J. Appl. Phys. 1997. V. 36. P. L1453. https://doi.org/10.1143/JJAP.36.L1453
  19. Георгобиани А.Н., Грузинцев А.Н., Волков В.Т. и др. // Физика и техника полупроводников. 2002. Т. 36. С. 284.
  20. Sernelius B.E., Berggren K.-F., Jin Z.-C. et al. // Phys. Rev. B. 1988. V. 37. P. 10244. https://doi.org/10.1103/PhysRevB.37.10244
  21. Yoon M.H., Lee S.H., Park H.L. et al. // J. Mater. Sci. Lett. 2002. V. 21. P. 1703. https://doi.org/10.1023/A:1020841213266
  22. Nan T., Zeng H., Liang W. et al. // J. Cryst. Growth. 2012. V. 340. P. 83. https://doi.org/10.1016/j.jcrysgro.2011.12.047
  23. Liu M., Qu S.W., Yu W.W. et al // Appl. Phys. Lett. 2010. V. 97. P. 231906. https://doi.org/10.1063/1.3525171
  24. Khalid A., Ahmad P., Alharthi A.I. et al. // Materials. 2021. V. 14. P. 3223. https://doi.org/10.3390/ma14123223
  25. Асваров А.Ш., Ахмедов А.К., Муслимов А.Э. и др. // Письма в ЖТФ. 2022. Т. 48. С. 51. https://doi.org/10.21883/PJTF.2022.02.51914.19001
  26. Alsaad A.M., Ahmad A.A., Qattan I.A. et al. // Crystals. 2020. V. 10. P. 252. https://doi.org/10.3390/cryst10040252
  27. Волчков И.С., Ополченцев А.М., Задорожная Л.А. и др. // Письма в ЖТФ. 2019. Т. 45. С. 7. https://doi.org/10.21883/PJTF.2019.13.47948.17808
  28. González-Garnica M., Galdámez-Martínez A., Malagón F. et al. // Sens. Actuators B Chem. 2021. V. 337. P. 129765. https://doi.org/10.1016/j.snb.2021.129765
  29. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. матер. 2007. Т. 43. С. 301.
  30. Zadorozhnaya L.A., Tarasov A.P., Volchkov I.S. et al. // Materials. 2022. V. 15. P. 8165. https://doi.org/10.3390/ma15228165

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of ZnO:Au microcrystals and the distribution map of elements (Zn, Au, O) at growth time of 5 (a), 10 (b), 15 min (c). The insets show SEM images of cross sections of the samples

Download (1MB)
3. Fig. 2. X-ray diffractograms of ZnO:Au microcrystals

Download (484KB)
4. Fig. 3. X-ray diffractograms of ZnO:Au microcrystals in the angle range 2 = 30.5-34.5

Download (190KB)
5. Fig. 4. Change of gold content in ZnO microcrystals as their size increases

Download (107KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».