Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.

Full Text

Restricted Access

About the authors

A. L. Vasiliev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

A. G. Ivanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

V. I. Bondarenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

A. L. Golovin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

V. V. Kononenko

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

K. Kh. Ashikkalieva

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

E. V. Zavedeev

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

V. I. Konov

Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

References

  1. Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
  2. Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
  3. Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
  4. Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
  5. John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
  6. Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
  7. Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
  8. Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
  9. Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
  10. Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
  11. Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
  12. Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
  13. Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
  14. Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
  15. Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
  16. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  17. Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
  18. Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
  19. Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
  20. Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
  21. Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
  22. Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
  23. Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
  24. Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
  25. Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
  26. Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
  27. Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
  28. Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
  29. Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
  30. Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
  31. Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
  32. Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
  33. Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
  34. Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
  35. Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
  36. Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
  37. Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
  38. Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
  39. Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
  40. Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
  41. Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Light-field image of gold nanoparticles on a carbon grid (a), VFPEM image of one of the rounded nanoparticles (b), arrows show twinning boundaries, a square indicates the region from which a two-dimensional Fourier spectrum was obtained (inset). The spectrum corresponds to the electronogram from HCC-Au in the [111] projection of the crystal lattice

Download (442KB)
3. Fig. 2. VRPEM images of hexagonal (a) and triangular (b) particles. Typical electronogram obtained from such particles (c) and two-dimensional Fourier spectrum (d)

Download (748KB)
4. Fig. 3. HRPEM image of the nanoparticle (a), enlarged image of the crystal lattice (b), corresponding two-dimensional Fourier spectrum (c), calculated electronogram corresponding to 4H HCC-Au (d)

Download (448KB)
5. Fig. 4. VFPEM image of the nanoparticle after tilting by 52º relative to the position shown in Fig. 3a, (a); enlarged image of the crystal lattice of region 1 after filtration (b); two-dimensional Fourier spectrum from region 1 (c); enlarged image of the crystal lattice of region 2 after filtration (d); two-dimensional Fourier spectrum from region 2 (e)

Download (152KB)
6. Fig. 5. HRPEM image of a gold nanoparticle presumably with trigonal morphology (a); enlarged image of the crystal lattice of the region highlighted by a square (b); two-dimensional Fourier spectrum from this region (c)

Download (219KB)
7. Fig. 6. Visualization of the distribution of clustered peaks in the a*b* (a) and b*c* (b, c) backspace projections: a, b - all peaks, c - peaks indexed in the hexagonal cell a = 2.8843(8), c = 7.083(3) Å

Download (180KB)
8. Fig. 7. Diffractogram from powder - dried sol with gold nanoparticles. Curve - experimental data, vertical lines - reflections corresponding to HCC-Au (PDF-2 03-065-2870)

Download (110KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».